基于分子印迹聚合物- zns量子点的绿原酸光学检测复合传感器

IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Himshweta , Neelam Verma , Nitu Trehan , Minni Singh
{"title":"基于分子印迹聚合物- zns量子点的绿原酸光学检测复合传感器","authors":"Himshweta ,&nbsp;Neelam Verma ,&nbsp;Nitu Trehan ,&nbsp;Minni Singh","doi":"10.1016/j.ab.2025.115846","DOIUrl":null,"url":null,"abstract":"<div><div>Chlorogenic acid (CGA), a key phenolic acid found in coffee, fruits, vegetables, and herbs, has significant pharmacological activities, necessitating its accurate detection in complex matrices. In this study, an organic acrylate molecularly imprinted polymers-chitosan modified zinc sulphide quantum dots/polydopamine (MIPs-CS:ZnS QDs/PDA) based composite sensor for the detection of CGA has been designed. In MIPs shell, CGA served as template and 4-vinylpyridine and methacrylic acid as functional monomers, azobisisobutyronitrile acting as the initiator and ethylene glycol dimethacrylate as the cross-linker. Chitosan was incorporated to enhance the stability of ZnS QDs, while polydopamine was introduced during polymerization to improve adhesion and the selectivity of MIPs for CGA. Under ideal conditions, the composite sensor had shown a linear range of 0.02–11 μg/mL with detection limit of 8.9 × 10<sup>−3</sup> μg/mL. The composite sensor showed imprinting factor of 6.3, and response time of 12 min. The sensor demonstrated good selectivity towards CGA, in the presence of interfering agents. Composite sensor was successfully applied to detect CGA in plant extracts, coffee and fruit juices, with recovery ranges from 88.93 to 98.49 %. The MIPs-CS:ZnS QDs/PDA composite sensor offers a simple and robust approach for CGA detection in real samples without requiring pre-treatment.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"702 ","pages":"Article 115846"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecularly imprinted polymers-ZnS quantum dots based composite sensor for optical detection of chlorogenic acid\",\"authors\":\"Himshweta ,&nbsp;Neelam Verma ,&nbsp;Nitu Trehan ,&nbsp;Minni Singh\",\"doi\":\"10.1016/j.ab.2025.115846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chlorogenic acid (CGA), a key phenolic acid found in coffee, fruits, vegetables, and herbs, has significant pharmacological activities, necessitating its accurate detection in complex matrices. In this study, an organic acrylate molecularly imprinted polymers-chitosan modified zinc sulphide quantum dots/polydopamine (MIPs-CS:ZnS QDs/PDA) based composite sensor for the detection of CGA has been designed. In MIPs shell, CGA served as template and 4-vinylpyridine and methacrylic acid as functional monomers, azobisisobutyronitrile acting as the initiator and ethylene glycol dimethacrylate as the cross-linker. Chitosan was incorporated to enhance the stability of ZnS QDs, while polydopamine was introduced during polymerization to improve adhesion and the selectivity of MIPs for CGA. Under ideal conditions, the composite sensor had shown a linear range of 0.02–11 μg/mL with detection limit of 8.9 × 10<sup>−3</sup> μg/mL. The composite sensor showed imprinting factor of 6.3, and response time of 12 min. The sensor demonstrated good selectivity towards CGA, in the presence of interfering agents. Composite sensor was successfully applied to detect CGA in plant extracts, coffee and fruit juices, with recovery ranges from 88.93 to 98.49 %. The MIPs-CS:ZnS QDs/PDA composite sensor offers a simple and robust approach for CGA detection in real samples without requiring pre-treatment.</div></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"702 \",\"pages\":\"Article 115846\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269725000843\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269725000843","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

绿原酸(Chlorogenic acid, CGA)是一种存在于咖啡、水果、蔬菜和草药中的关键酚酸,具有重要的药理活性,需要在复杂基质中进行准确检测。本研究设计了一种基于有机丙烯酸酯分子印迹聚合物-壳聚糖修饰的硫化锌量子点/聚多巴胺(MIPs-CS:ZnS QDs/PDA)的CGA检测复合传感器。在MIPs的壳层中,CGA为模板,4-乙烯基吡啶和甲基丙烯酸为功能单体,偶氮二异丁腈为引发剂,乙二醇二甲基丙烯酸酯为交联剂。在聚合过程中加入壳聚糖以提高ZnS量子点的稳定性,而在聚合过程中加入聚多巴胺以提高mip对CGA的粘附性和选择性。在理想条件下,复合传感器的线性范围为0.02 ~ 11 μg/mL,检出限为8.9 × 10−3 μg/mL。该传感器印迹因子为6.3,响应时间为12 min。在干扰物存在的情况下,该传感器对CGA具有良好的选择性。复合传感器成功地应用于植物提取物、咖啡和果汁中CGA的检测,回收率为88.93 ~ 98.49%。MIPs-CS:ZnS QDs/PDA复合传感器为实际样品的CGA检测提供了一种简单而稳健的方法,无需预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecularly imprinted polymers-ZnS quantum dots based composite sensor for optical detection of chlorogenic acid

Molecularly imprinted polymers-ZnS quantum dots based composite sensor for optical detection of chlorogenic acid
Chlorogenic acid (CGA), a key phenolic acid found in coffee, fruits, vegetables, and herbs, has significant pharmacological activities, necessitating its accurate detection in complex matrices. In this study, an organic acrylate molecularly imprinted polymers-chitosan modified zinc sulphide quantum dots/polydopamine (MIPs-CS:ZnS QDs/PDA) based composite sensor for the detection of CGA has been designed. In MIPs shell, CGA served as template and 4-vinylpyridine and methacrylic acid as functional monomers, azobisisobutyronitrile acting as the initiator and ethylene glycol dimethacrylate as the cross-linker. Chitosan was incorporated to enhance the stability of ZnS QDs, while polydopamine was introduced during polymerization to improve adhesion and the selectivity of MIPs for CGA. Under ideal conditions, the composite sensor had shown a linear range of 0.02–11 μg/mL with detection limit of 8.9 × 10−3 μg/mL. The composite sensor showed imprinting factor of 6.3, and response time of 12 min. The sensor demonstrated good selectivity towards CGA, in the presence of interfering agents. Composite sensor was successfully applied to detect CGA in plant extracts, coffee and fruit juices, with recovery ranges from 88.93 to 98.49 %. The MIPs-CS:ZnS QDs/PDA composite sensor offers a simple and robust approach for CGA detection in real samples without requiring pre-treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical biochemistry
Analytical biochemistry 生物-分析化学
CiteScore
5.70
自引率
0.00%
发文量
283
审稿时长
44 days
期刊介绍: The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field. The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology. The journal has been particularly active in: -Analytical techniques for biological molecules- Aptamer selection and utilization- Biosensors- Chromatography- Cloning, sequencing and mutagenesis- Electrochemical methods- Electrophoresis- Enzyme characterization methods- Immunological approaches- Mass spectrometry of proteins and nucleic acids- Metabolomics- Nano level techniques- Optical spectroscopy in all its forms. The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信