Odd Lomax Burr X型分布的统计性质及其在故障率和辐射数据中的应用

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Ahmed R. El-Saeed , Nooruldeen A. Noori , Mundher A. Khaleel , Safar M. Alghamdi
{"title":"Odd Lomax Burr X型分布的统计性质及其在故障率和辐射数据中的应用","authors":"Ahmed R. El-Saeed ,&nbsp;Nooruldeen A. Noori ,&nbsp;Mundher A. Khaleel ,&nbsp;Safar M. Alghamdi","doi":"10.1016/j.jrras.2025.101421","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces the Odd Lomax Burr Type X (OLoBX) distribution, an extension of the four-parameter Burr Type X model. The Quantile function, moments, the function that generates the moments, Rényi entropy, and the ordered statistics are some of the new distribution's essential statistical aspects. For the purpose of estimating the parameters of the new distribution, the technique of maximum likelihood estimation is used. Monte Carlo simulation examines the estimators' performance and reveals that the maximum likelihood technique is effective in parameter estimation. The OLoBX distribution was used on the electrical relay failure time, fatigue fracture life, and radiation data sets to test its adaptability and flexibility, it outperformed its sub models and other popular distributions. The new distribution showed high flexibility in representing heavy-tailed and asymmetric data, outputforming well-known distributions such as TEEBX, BeBX, and WeBX. Monte Carlo simulations demonstrated that MLE estimation of OLoBX parameters is satable and accurate, especially at large sample size (n = 300), where the RMSE and Abias values decreased significantly. The OLoBX distribution outperformed competing distributions in terms of goodness-of-fit criteria, confirming its effectiveness in modeling real data.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 2","pages":"Article 101421"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical properties of the Odd Lomax Burr Type X distribution with applications to failure rate and radiation data\",\"authors\":\"Ahmed R. El-Saeed ,&nbsp;Nooruldeen A. Noori ,&nbsp;Mundher A. Khaleel ,&nbsp;Safar M. Alghamdi\",\"doi\":\"10.1016/j.jrras.2025.101421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article introduces the Odd Lomax Burr Type X (OLoBX) distribution, an extension of the four-parameter Burr Type X model. The Quantile function, moments, the function that generates the moments, Rényi entropy, and the ordered statistics are some of the new distribution's essential statistical aspects. For the purpose of estimating the parameters of the new distribution, the technique of maximum likelihood estimation is used. Monte Carlo simulation examines the estimators' performance and reveals that the maximum likelihood technique is effective in parameter estimation. The OLoBX distribution was used on the electrical relay failure time, fatigue fracture life, and radiation data sets to test its adaptability and flexibility, it outperformed its sub models and other popular distributions. The new distribution showed high flexibility in representing heavy-tailed and asymmetric data, outputforming well-known distributions such as TEEBX, BeBX, and WeBX. Monte Carlo simulations demonstrated that MLE estimation of OLoBX parameters is satable and accurate, especially at large sample size (n = 300), where the RMSE and Abias values decreased significantly. The OLoBX distribution outperformed competing distributions in terms of goodness-of-fit criteria, confirming its effectiveness in modeling real data.</div></div>\",\"PeriodicalId\":16920,\"journal\":{\"name\":\"Journal of Radiation Research and Applied Sciences\",\"volume\":\"18 2\",\"pages\":\"Article 101421\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research and Applied Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687850725001335\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725001335","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了奇数Lomax毛刺类型X (OLoBX)分布,这是四参数毛刺类型X模型的扩展。分位数函数、矩、生成矩的函数、r熵和有序统计是新分布的一些基本统计方面。为了估计新分布的参数,使用了极大似然估计技术。蒙特卡罗仿真检验了估计器的性能,并表明极大似然技术在参数估计中是有效的。将OLoBX分布应用于电气继电器故障时间、疲劳断裂寿命和辐射数据集,测试了其适应性和灵活性,优于其子模型和其他常用分布。新的分布在表示重尾和非对称数据方面表现出高度的灵活性,输出形成了众所周知的分布,如TEEBX、BeBX和WeBX。蒙特卡罗模拟表明,对OLoBX参数的MLE估计是稳定和准确的,特别是在大样本量(n = 300)下,RMSE和Abias值显著下降。在拟合优度标准方面,OLoBX分布优于竞争分布,证实了其在建模真实数据方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical properties of the Odd Lomax Burr Type X distribution with applications to failure rate and radiation data
This article introduces the Odd Lomax Burr Type X (OLoBX) distribution, an extension of the four-parameter Burr Type X model. The Quantile function, moments, the function that generates the moments, Rényi entropy, and the ordered statistics are some of the new distribution's essential statistical aspects. For the purpose of estimating the parameters of the new distribution, the technique of maximum likelihood estimation is used. Monte Carlo simulation examines the estimators' performance and reveals that the maximum likelihood technique is effective in parameter estimation. The OLoBX distribution was used on the electrical relay failure time, fatigue fracture life, and radiation data sets to test its adaptability and flexibility, it outperformed its sub models and other popular distributions. The new distribution showed high flexibility in representing heavy-tailed and asymmetric data, outputforming well-known distributions such as TEEBX, BeBX, and WeBX. Monte Carlo simulations demonstrated that MLE estimation of OLoBX parameters is satable and accurate, especially at large sample size (n = 300), where the RMSE and Abias values decreased significantly. The OLoBX distribution outperformed competing distributions in terms of goodness-of-fit criteria, confirming its effectiveness in modeling real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信