采矿对伊朗中部湿地生态系统的影响:一种评估生态风险的概率方法

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Amin Mohammadpour , Fariba Abbasi , Ebrahim Shahsavani , Azadeh Kazemi
{"title":"采矿对伊朗中部湿地生态系统的影响:一种评估生态风险的概率方法","authors":"Amin Mohammadpour ,&nbsp;Fariba Abbasi ,&nbsp;Ebrahim Shahsavani ,&nbsp;Azadeh Kazemi","doi":"10.1016/j.eti.2025.104131","DOIUrl":null,"url":null,"abstract":"<div><div>Wetlands are essential for sustaining ecological stability and ecosystem equilibrium. This study investigated soil pollution and ecological risks in Iran's Meighan wetland, focusing on the impact of nearby sodium sulfate mining. The enrichment factor, geo-accumulation index, and potential ecological risk index of elements were evaluated using both deterministic and probabilistic approaches. The findings revealed some potentially toxic elements levels in ore waste exceeded those in raw materials, and the wetland acted as a receptor for toxic elements. Additionally, rare earth elements such as yttrium, ytterbium, cerium, scandium, and lanthanum were detected in wetland samples. Analysis revealed that cobalt (in some waste ore samples), selenium (downstream), and vanadium (in some wetland samples) exceeded permissible limits. Deterministic risk assessments showed extremely high pollution indices for vanadium (enrichment factor = 85.77, Geo-accumulation Index, Igeo= 11.37) and titanium (EF= 5.39), indicating significant anthropogenic impacts. Monte Carlo simulations suggested that the Igeo values revealed a significant rise in contamination levels, with arsenic (52.83 %) and barium (31.59 %) indicating moderately to heavy polluted. Meanwhile, vanadium (97.21 %), aluminum (96.91 %), lead (84.69 %), chromium (25.33 %), nickel (25.17 %), cobalt (23.32 %), and manganese (13.36 %) were classified as extremely polluted. The aluminum, lead, and titanium exhibited very high enrichment, with levels at 0.3 %, 0.4 %, and 0.2 %, respectively. The potential ecological risk index classified 63.53 % of samples as 'Very High' risk, with nickel and chromium being the most significant contributors. Hence, this mine posed a substantial ecological risk to Meighan Wetland, requiring rehabilitation efforts to address anthropogenic and geogenic factors.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104131"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of mining on the ecosystem of central Iran's Wetland: A probabilistic approach to assessing ecological risk\",\"authors\":\"Amin Mohammadpour ,&nbsp;Fariba Abbasi ,&nbsp;Ebrahim Shahsavani ,&nbsp;Azadeh Kazemi\",\"doi\":\"10.1016/j.eti.2025.104131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wetlands are essential for sustaining ecological stability and ecosystem equilibrium. This study investigated soil pollution and ecological risks in Iran's Meighan wetland, focusing on the impact of nearby sodium sulfate mining. The enrichment factor, geo-accumulation index, and potential ecological risk index of elements were evaluated using both deterministic and probabilistic approaches. The findings revealed some potentially toxic elements levels in ore waste exceeded those in raw materials, and the wetland acted as a receptor for toxic elements. Additionally, rare earth elements such as yttrium, ytterbium, cerium, scandium, and lanthanum were detected in wetland samples. Analysis revealed that cobalt (in some waste ore samples), selenium (downstream), and vanadium (in some wetland samples) exceeded permissible limits. Deterministic risk assessments showed extremely high pollution indices for vanadium (enrichment factor = 85.77, Geo-accumulation Index, Igeo= 11.37) and titanium (EF= 5.39), indicating significant anthropogenic impacts. Monte Carlo simulations suggested that the Igeo values revealed a significant rise in contamination levels, with arsenic (52.83 %) and barium (31.59 %) indicating moderately to heavy polluted. Meanwhile, vanadium (97.21 %), aluminum (96.91 %), lead (84.69 %), chromium (25.33 %), nickel (25.17 %), cobalt (23.32 %), and manganese (13.36 %) were classified as extremely polluted. The aluminum, lead, and titanium exhibited very high enrichment, with levels at 0.3 %, 0.4 %, and 0.2 %, respectively. The potential ecological risk index classified 63.53 % of samples as 'Very High' risk, with nickel and chromium being the most significant contributors. Hence, this mine posed a substantial ecological risk to Meighan Wetland, requiring rehabilitation efforts to address anthropogenic and geogenic factors.</div></div>\",\"PeriodicalId\":11725,\"journal\":{\"name\":\"Environmental Technology & Innovation\",\"volume\":\"38 \",\"pages\":\"Article 104131\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology & Innovation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352186425001178\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186425001178","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

湿地对维持生态稳定和生态系统平衡至关重要。本研究调查了伊朗Meighan湿地的土壤污染和生态风险,重点研究了附近硫酸钠开采的影响。采用确定性和概率方法对元素的富集系数、地质富集指数和潜在生态风险指数进行了评价。研究结果显示,矿石废料中的一些潜在有毒元素含量超过了原材料中的有毒元素含量,而湿地是有毒元素的受体。此外,在湿地样品中还检测到钇、钇、铈、钪、镧等稀土元素。分析显示,钴(在一些废矿样本中)、硒(在下游)和钒(在一些湿地样本中)超过了允许的限度。确定性风险评价结果显示,钒(富集系数85.77,地质累积指数Igeo= 11.37)和钛(EF= 5.39)污染指数极高,表明人类活动影响显著。蒙特卡罗模拟表明,Igeo值显示污染水平显著上升,砷(52.83 %)和钡(31.59 %)表明中度至重度污染。钒(97.21 %)、铝(96.91 %)、铅(84.69 %)、铬(25.33 %)、镍(25.17 %)、钴(23.32 %)、锰(13.36 %)属于重度污染。铝、铅和钛表现出非常高的富集,含量分别为0.3 %、0.4 %和0.2 %。潜在生态风险指数将63.53 %的样品分类为“非常高”风险,其中镍和铬是最重要的贡献者。因此,该矿山对梅根湿地构成了重大的生态风险,需要进行修复工作,以解决人为和地质因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of mining on the ecosystem of central Iran's Wetland: A probabilistic approach to assessing ecological risk
Wetlands are essential for sustaining ecological stability and ecosystem equilibrium. This study investigated soil pollution and ecological risks in Iran's Meighan wetland, focusing on the impact of nearby sodium sulfate mining. The enrichment factor, geo-accumulation index, and potential ecological risk index of elements were evaluated using both deterministic and probabilistic approaches. The findings revealed some potentially toxic elements levels in ore waste exceeded those in raw materials, and the wetland acted as a receptor for toxic elements. Additionally, rare earth elements such as yttrium, ytterbium, cerium, scandium, and lanthanum were detected in wetland samples. Analysis revealed that cobalt (in some waste ore samples), selenium (downstream), and vanadium (in some wetland samples) exceeded permissible limits. Deterministic risk assessments showed extremely high pollution indices for vanadium (enrichment factor = 85.77, Geo-accumulation Index, Igeo= 11.37) and titanium (EF= 5.39), indicating significant anthropogenic impacts. Monte Carlo simulations suggested that the Igeo values revealed a significant rise in contamination levels, with arsenic (52.83 %) and barium (31.59 %) indicating moderately to heavy polluted. Meanwhile, vanadium (97.21 %), aluminum (96.91 %), lead (84.69 %), chromium (25.33 %), nickel (25.17 %), cobalt (23.32 %), and manganese (13.36 %) were classified as extremely polluted. The aluminum, lead, and titanium exhibited very high enrichment, with levels at 0.3 %, 0.4 %, and 0.2 %, respectively. The potential ecological risk index classified 63.53 % of samples as 'Very High' risk, with nickel and chromium being the most significant contributors. Hence, this mine posed a substantial ecological risk to Meighan Wetland, requiring rehabilitation efforts to address anthropogenic and geogenic factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信