在以直径为3的树作为星补的正则图上

IF 0.7 3区 数学 Q2 MATHEMATICS
Peter Rowlinson , Zoran Stanić
{"title":"在以直径为3的树作为星补的正则图上","authors":"Peter Rowlinson ,&nbsp;Zoran Stanić","doi":"10.1016/j.disc.2025.114488","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the regular graphs with a star complement <em>H</em> which is a tree of diameter 3. Thus <em>H</em> is a double star <span><math><mi>D</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, i.e. a tree with two vertices of degree <em>m</em> and <em>n</em> greater than 1, and all other vertices of degree 1. We determine all the regular graphs <em>G</em> that arise when either (a) <span><math><mi>μ</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> or (b) <span><math><mi>m</mi><mo>=</mo><mi>n</mi></math></span> and <em>μ</em> is an integer less than −1. It is also proved that for <span><math><mi>m</mi><mo>=</mo><mi>n</mi></math></span> and <span><math><mi>μ</mi><mo>≥</mo><mn>2</mn></math></span>, the degree of <em>G</em> must be <em>n</em>; moreover,<span><span><span><math><mi>n</mi><mo>≥</mo><mfrac><mrow><mi>μ</mi><mo>(</mo><mi>μ</mi><mo>(</mo><mn>2</mn><mi>μ</mi><mo>(</mo><mi>μ</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mn>3</mn><mo>)</mo><mo>+</mo><mn>3</mn><mo>)</mo><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn><mi>μ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo></math></span></span></span> when <em>μ</em> is an integer.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114488"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On regular graphs with a tree of diameter 3 as a star complement\",\"authors\":\"Peter Rowlinson ,&nbsp;Zoran Stanić\",\"doi\":\"10.1016/j.disc.2025.114488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the regular graphs with a star complement <em>H</em> which is a tree of diameter 3. Thus <em>H</em> is a double star <span><math><mi>D</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, i.e. a tree with two vertices of degree <em>m</em> and <em>n</em> greater than 1, and all other vertices of degree 1. We determine all the regular graphs <em>G</em> that arise when either (a) <span><math><mi>μ</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> or (b) <span><math><mi>m</mi><mo>=</mo><mi>n</mi></math></span> and <em>μ</em> is an integer less than −1. It is also proved that for <span><math><mi>m</mi><mo>=</mo><mi>n</mi></math></span> and <span><math><mi>μ</mi><mo>≥</mo><mn>2</mn></math></span>, the degree of <em>G</em> must be <em>n</em>; moreover,<span><span><span><math><mi>n</mi><mo>≥</mo><mfrac><mrow><mi>μ</mi><mo>(</mo><mi>μ</mi><mo>(</mo><mn>2</mn><mi>μ</mi><mo>(</mo><mi>μ</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mn>3</mn><mo>)</mo><mo>+</mo><mn>3</mn><mo>)</mo><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn><mi>μ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo></math></span></span></span> when <em>μ</em> is an integer.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 8\",\"pages\":\"Article 114488\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25000962\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000962","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有星补H的正则图,它是一棵直径为3的树。因此,H是一个双星D(m,n),即一个具有两个m和n度大于1的顶点,以及所有其他1度顶点的树。我们确定了当(a) μ∈{0,1}或(b) m=n且μ是小于- 1的整数时出现的所有正则图G。还证明了当m=n且μ≥2时,G的阶数必须为n;此外,n≥μ(μ(2μ(μ+ 1)−3)+ 3)12μ−−1,当μ是整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On regular graphs with a tree of diameter 3 as a star complement
We investigate the regular graphs with a star complement H which is a tree of diameter 3. Thus H is a double star D(m,n), i.e. a tree with two vertices of degree m and n greater than 1, and all other vertices of degree 1. We determine all the regular graphs G that arise when either (a) μ{0,1} or (b) m=n and μ is an integer less than −1. It is also proved that for m=n and μ2, the degree of G must be n; moreover,nμ(μ(2μ(μ+1)3)+3)12μ1, when μ is an integer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信