机械,热,和流变学性质的鱼-猪明胶微粒复合材料的先进的3D生物制造

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS
Syed M. Q. Bokhari, Mecit A. Alioglu, Grace L. Voronin and Jeffrey M. Catchmark*, 
{"title":"机械,热,和流变学性质的鱼-猪明胶微粒复合材料的先进的3D生物制造","authors":"Syed M. Q. Bokhari,&nbsp;Mecit A. Alioglu,&nbsp;Grace L. Voronin and Jeffrey M. Catchmark*,&nbsp;","doi":"10.1021/acsabm.4c0197710.1021/acsabm.4c01977","DOIUrl":null,"url":null,"abstract":"<p >Driven by the increasing need for the biofabrication of complex hydrogels, this work introduces a class of fish–porcine composite hydrogels that combine rapid, tunable photo-cross-linking with microparticle reinforcement for advanced 3D printing. Here, precross-linked porcine gelatin (methacrylated porcine gelatin, MPG) microparticles are incorporated into a methacrylated fish gelatin (MFG) matrix to produce robust yet easily processable hydrogels. Nuclear magnetic resonance (NMR) confirmed the degree of methacrylation, while scanning electron microscopy (SEM) revealed the hierarchical porosity vital for tissue integration. Detailed Mastersizer measurements characterized the size distributions of the MPG microparticles, and rheological tests demonstrated the composite hydrogels’ strong shear-thinning behavior, an essential trait for extrusion-based and embedded 3D printing. Thermal (TGA, DSC) and mechanical (compression) analyses show that the microparticle-reinforced hydrogels achieve improved thermal stability, adjustable mass swelling ratio, and customizable compressive moduli. As a proof of concept, these composites are validated in digital light processing (DLP) printing of microfluidic constructs and as a support bath for embedded printing of complex geometries. This platform provides a unique synergy of easy UV cross-linkability, tunable mechanical features, and 3D printing versatility. This advancement underscores the potential of these materials as a foundational platform in tissue engineering, opening new avenues for creating complex, biocompatible structures with customizable properties.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 3","pages":"2614–2628 2614–2628"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical, Thermal, and Rheological Properties of Fish–Porcine Gelatin Microparticle Composites for Advanced 3D Biofabrication\",\"authors\":\"Syed M. Q. Bokhari,&nbsp;Mecit A. Alioglu,&nbsp;Grace L. Voronin and Jeffrey M. Catchmark*,&nbsp;\",\"doi\":\"10.1021/acsabm.4c0197710.1021/acsabm.4c01977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Driven by the increasing need for the biofabrication of complex hydrogels, this work introduces a class of fish–porcine composite hydrogels that combine rapid, tunable photo-cross-linking with microparticle reinforcement for advanced 3D printing. Here, precross-linked porcine gelatin (methacrylated porcine gelatin, MPG) microparticles are incorporated into a methacrylated fish gelatin (MFG) matrix to produce robust yet easily processable hydrogels. Nuclear magnetic resonance (NMR) confirmed the degree of methacrylation, while scanning electron microscopy (SEM) revealed the hierarchical porosity vital for tissue integration. Detailed Mastersizer measurements characterized the size distributions of the MPG microparticles, and rheological tests demonstrated the composite hydrogels’ strong shear-thinning behavior, an essential trait for extrusion-based and embedded 3D printing. Thermal (TGA, DSC) and mechanical (compression) analyses show that the microparticle-reinforced hydrogels achieve improved thermal stability, adjustable mass swelling ratio, and customizable compressive moduli. As a proof of concept, these composites are validated in digital light processing (DLP) printing of microfluidic constructs and as a support bath for embedded printing of complex geometries. This platform provides a unique synergy of easy UV cross-linkability, tunable mechanical features, and 3D printing versatility. This advancement underscores the potential of these materials as a foundational platform in tissue engineering, opening new avenues for creating complex, biocompatible structures with customizable properties.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"8 3\",\"pages\":\"2614–2628 2614–2628\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsabm.4c01977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsabm.4c01977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在复杂水凝胶生物制造需求日益增长的推动下,这项工作引入了一类鱼-猪复合水凝胶,将快速、可调的光交联与用于先进3D打印的微粒增强相结合。在这里,预交联的猪明胶(甲基丙烯酸化猪明胶,MPG)微粒被纳入甲基丙烯酸化鱼明胶(MFG)基质中,以产生坚固且易于加工的水凝胶。核磁共振(NMR)证实了甲基丙烯酸基化的程度,而扫描电子显微镜(SEM)显示了对组织整合至关重要的分层孔隙度。Mastersizer详细测量了MPG微粒的尺寸分布,流变学测试表明复合水凝胶具有强大的剪切变薄行为,这是基于挤压和嵌入式3D打印的基本特性。热分析(TGA、DSC)和力学分析(压缩)表明,微颗粒增强水凝胶具有更好的热稳定性、可调节的质量膨胀比和可定制的压缩模量。作为概念的证明,这些复合材料在微流体结构的数字光处理(DLP)印刷中得到了验证,并作为复杂几何形状嵌入印刷的支撑槽。该平台提供了简单的UV交联性,可调机械特性和3D打印多功能性的独特协同作用。这一进展强调了这些材料作为组织工程基础平台的潜力,为创建具有可定制特性的复杂生物相容性结构开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanical, Thermal, and Rheological Properties of Fish–Porcine Gelatin Microparticle Composites for Advanced 3D Biofabrication

Mechanical, Thermal, and Rheological Properties of Fish–Porcine Gelatin Microparticle Composites for Advanced 3D Biofabrication

Driven by the increasing need for the biofabrication of complex hydrogels, this work introduces a class of fish–porcine composite hydrogels that combine rapid, tunable photo-cross-linking with microparticle reinforcement for advanced 3D printing. Here, precross-linked porcine gelatin (methacrylated porcine gelatin, MPG) microparticles are incorporated into a methacrylated fish gelatin (MFG) matrix to produce robust yet easily processable hydrogels. Nuclear magnetic resonance (NMR) confirmed the degree of methacrylation, while scanning electron microscopy (SEM) revealed the hierarchical porosity vital for tissue integration. Detailed Mastersizer measurements characterized the size distributions of the MPG microparticles, and rheological tests demonstrated the composite hydrogels’ strong shear-thinning behavior, an essential trait for extrusion-based and embedded 3D printing. Thermal (TGA, DSC) and mechanical (compression) analyses show that the microparticle-reinforced hydrogels achieve improved thermal stability, adjustable mass swelling ratio, and customizable compressive moduli. As a proof of concept, these composites are validated in digital light processing (DLP) printing of microfluidic constructs and as a support bath for embedded printing of complex geometries. This platform provides a unique synergy of easy UV cross-linkability, tunable mechanical features, and 3D printing versatility. This advancement underscores the potential of these materials as a foundational platform in tissue engineering, opening new avenues for creating complex, biocompatible structures with customizable properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信