微波驱动界面工程增强电子流在rgo集成NH2-MIL125(Ti)/TiO2上高效太阳能NO氧化

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuejian Cheng, Haotong Ma, Ruiyi Yang, Handong Zhang, Wenchao Wang, Yingchun Miao and Shuning Xiao*, 
{"title":"微波驱动界面工程增强电子流在rgo集成NH2-MIL125(Ti)/TiO2上高效太阳能NO氧化","authors":"Xuejian Cheng,&nbsp;Haotong Ma,&nbsp;Ruiyi Yang,&nbsp;Handong Zhang,&nbsp;Wenchao Wang,&nbsp;Yingchun Miao and Shuning Xiao*,&nbsp;","doi":"10.1021/acssuschemeng.5c0028510.1021/acssuschemeng.5c00285","DOIUrl":null,"url":null,"abstract":"<p >Interface design plays a pivotal role in developing high-performance photocatalysts for NO oxidation. In this work, a hierarchical rGO-integrated NH<sub>2</sub>-MIL125(Ti)/TiO<sub>2</sub> photocatalyst was constructed using a combined liquid-phase and solid-phase microwave synthesis approach. The liquid-phase microwave process enabled the precise deposition of NH<sub>2</sub>-MIL125(Ti) on graphene oxide (GO), forming strong interfacial bonds, while the solid-phase microwave thermal shock (SMTS) transformed GO into rGO and induced the formation of TiO<sub>2</sub> nanoparticles. This hierarchical structure established an efficient electron transport pathway, promoting charge separation and directional electron transfer to activate O<sub>2</sub> and generate superoxide radicals (<sup>•</sup>O<sub>2</sub><sup>–</sup>) as the primary reactive species. The resulting photocatalyst achieved remarkable NO oxidation performance, with an 81.2% NO removal efficiency and a NO<sub>3</sub><sup>–</sup> selectivity of 98.5% under simulated sunlight. This study highlights the potential of microwave–driven interface engineering in the innovative design of photocatalysts for environmentally sustainable applications.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 10","pages":"4252–4264 4252–4264"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave–Driven Interface Engineering Enhancing Electron Flow for Highly Efficient Solar NO Oxidation over rGO-Integrated NH2-MIL125(Ti)/TiO2\",\"authors\":\"Xuejian Cheng,&nbsp;Haotong Ma,&nbsp;Ruiyi Yang,&nbsp;Handong Zhang,&nbsp;Wenchao Wang,&nbsp;Yingchun Miao and Shuning Xiao*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c0028510.1021/acssuschemeng.5c00285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Interface design plays a pivotal role in developing high-performance photocatalysts for NO oxidation. In this work, a hierarchical rGO-integrated NH<sub>2</sub>-MIL125(Ti)/TiO<sub>2</sub> photocatalyst was constructed using a combined liquid-phase and solid-phase microwave synthesis approach. The liquid-phase microwave process enabled the precise deposition of NH<sub>2</sub>-MIL125(Ti) on graphene oxide (GO), forming strong interfacial bonds, while the solid-phase microwave thermal shock (SMTS) transformed GO into rGO and induced the formation of TiO<sub>2</sub> nanoparticles. This hierarchical structure established an efficient electron transport pathway, promoting charge separation and directional electron transfer to activate O<sub>2</sub> and generate superoxide radicals (<sup>•</sup>O<sub>2</sub><sup>–</sup>) as the primary reactive species. The resulting photocatalyst achieved remarkable NO oxidation performance, with an 81.2% NO removal efficiency and a NO<sub>3</sub><sup>–</sup> selectivity of 98.5% under simulated sunlight. This study highlights the potential of microwave–driven interface engineering in the innovative design of photocatalysts for environmentally sustainable applications.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 10\",\"pages\":\"4252–4264 4252–4264\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c00285\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c00285","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

界面设计在开发高性能NO氧化光催化剂中起着关键作用。本研究采用液相和固相相结合的微波合成方法构建了层次化rgo集成NH2-MIL125(Ti)/TiO2光催化剂。液相微波工艺使NH2-MIL125(Ti)精确沉积在氧化石墨烯(GO)上,形成强界面键,而固相微波热冲击(SMTS)将GO转化为rGO并诱导形成TiO2纳米颗粒。这种分层结构建立了有效的电子传递途径,促进电荷分离和定向电子转移,激活O2,产生超氧自由基(•O2 -)作为主要反应物质。所制备的光催化剂在模拟阳光下的NO去除率为81.2%,NO3 -选择性为98.5%,具有良好的NO氧化性能。这项研究强调了微波驱动界面工程在环境可持续应用的光催化剂创新设计中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microwave–Driven Interface Engineering Enhancing Electron Flow for Highly Efficient Solar NO Oxidation over rGO-Integrated NH2-MIL125(Ti)/TiO2

Microwave–Driven Interface Engineering Enhancing Electron Flow for Highly Efficient Solar NO Oxidation over rGO-Integrated NH2-MIL125(Ti)/TiO2

Interface design plays a pivotal role in developing high-performance photocatalysts for NO oxidation. In this work, a hierarchical rGO-integrated NH2-MIL125(Ti)/TiO2 photocatalyst was constructed using a combined liquid-phase and solid-phase microwave synthesis approach. The liquid-phase microwave process enabled the precise deposition of NH2-MIL125(Ti) on graphene oxide (GO), forming strong interfacial bonds, while the solid-phase microwave thermal shock (SMTS) transformed GO into rGO and induced the formation of TiO2 nanoparticles. This hierarchical structure established an efficient electron transport pathway, promoting charge separation and directional electron transfer to activate O2 and generate superoxide radicals (O2) as the primary reactive species. The resulting photocatalyst achieved remarkable NO oxidation performance, with an 81.2% NO removal efficiency and a NO3 selectivity of 98.5% under simulated sunlight. This study highlights the potential of microwave–driven interface engineering in the innovative design of photocatalysts for environmentally sustainable applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信