Andreas Paul, Tuukka Kokkola, Zheng Fang, Mika Ihalainen, Hendryk Czech, Uwe Etzien, Thorsten Hohaus, Olli Sippula, Yinon Rudich, Bert Buchholz, Astrid Kiendler-Scharr, Ralf Zimmerman
{"title":"光化学老化对船用发动机二次气溶胶形成的影响","authors":"Andreas Paul, Tuukka Kokkola, Zheng Fang, Mika Ihalainen, Hendryk Czech, Uwe Etzien, Thorsten Hohaus, Olli Sippula, Yinon Rudich, Bert Buchholz, Astrid Kiendler-Scharr, Ralf Zimmerman","doi":"10.1038/s41612-025-00985-2","DOIUrl":null,"url":null,"abstract":"<p>Ship traffic is known as an important contributor to air pollution. Regulations aimed at reducing sulfur oxide pollution by limiting the fuel sulfur content (FSC) may also decrease primary particulate matter (PM) emitted from ships. However, there is a knowledge gap regarding how the FSC affects secondary aerosol formation. The emissions from a research ship engine operated with either low sulfur heavy fuel oil (LS-HFO) (FSC = 0.5%) or marine gas oil (MGO) (FSC = 0.01%), were photochemically processed in the oxidation flow reactor “PEAR” to achieve an equivalent photochemical age between 0 and 9 days in the atmosphere. FSC was found to have no significant impact on secondary organic aerosol formation after 3 days of aging, at 1.7 ± 0.4 g/kg for MGO and 1.5 ± 0.4 g/kg for LS-HFO. Furthermore, the composition and oxidative pathways remained similar regardless of FSC. However, because of the higher secondary SO<sub>4</sub> formation and primary aerosol emissions, LS-HFO had significantly higher total PM than MGO.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"124 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of photochemical aging on secondary aerosol formation from a marine engine\",\"authors\":\"Andreas Paul, Tuukka Kokkola, Zheng Fang, Mika Ihalainen, Hendryk Czech, Uwe Etzien, Thorsten Hohaus, Olli Sippula, Yinon Rudich, Bert Buchholz, Astrid Kiendler-Scharr, Ralf Zimmerman\",\"doi\":\"10.1038/s41612-025-00985-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ship traffic is known as an important contributor to air pollution. Regulations aimed at reducing sulfur oxide pollution by limiting the fuel sulfur content (FSC) may also decrease primary particulate matter (PM) emitted from ships. However, there is a knowledge gap regarding how the FSC affects secondary aerosol formation. The emissions from a research ship engine operated with either low sulfur heavy fuel oil (LS-HFO) (FSC = 0.5%) or marine gas oil (MGO) (FSC = 0.01%), were photochemically processed in the oxidation flow reactor “PEAR” to achieve an equivalent photochemical age between 0 and 9 days in the atmosphere. FSC was found to have no significant impact on secondary organic aerosol formation after 3 days of aging, at 1.7 ± 0.4 g/kg for MGO and 1.5 ± 0.4 g/kg for LS-HFO. Furthermore, the composition and oxidative pathways remained similar regardless of FSC. However, because of the higher secondary SO<sub>4</sub> formation and primary aerosol emissions, LS-HFO had significantly higher total PM than MGO.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-00985-2\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00985-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The impact of photochemical aging on secondary aerosol formation from a marine engine
Ship traffic is known as an important contributor to air pollution. Regulations aimed at reducing sulfur oxide pollution by limiting the fuel sulfur content (FSC) may also decrease primary particulate matter (PM) emitted from ships. However, there is a knowledge gap regarding how the FSC affects secondary aerosol formation. The emissions from a research ship engine operated with either low sulfur heavy fuel oil (LS-HFO) (FSC = 0.5%) or marine gas oil (MGO) (FSC = 0.01%), were photochemically processed in the oxidation flow reactor “PEAR” to achieve an equivalent photochemical age between 0 and 9 days in the atmosphere. FSC was found to have no significant impact on secondary organic aerosol formation after 3 days of aging, at 1.7 ± 0.4 g/kg for MGO and 1.5 ± 0.4 g/kg for LS-HFO. Furthermore, the composition and oxidative pathways remained similar regardless of FSC. However, because of the higher secondary SO4 formation and primary aerosol emissions, LS-HFO had significantly higher total PM than MGO.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.