Hemeihui Zhao , Min Yang , Bing Chen , Bo Liu , Baiyu Zhang
{"title":"潮汐区微塑料-抗生素共污染物的迁移","authors":"Hemeihui Zhao , Min Yang , Bing Chen , Bo Liu , Baiyu Zhang","doi":"10.1016/j.envpol.2025.126072","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) and antibiotics (ATs) are emerging contaminants with recognized negative effects on marine ecosystems. MPs can adsorb and transport ATs, posing combined toxic effects to marine organisms. Despite growing concerns, research remains limited on the MP-AT co-contaminants in tidal zones, which are home to numerous aquatic species and represent a particularly susceptible ecosystem. This study used polyethylene (PE) MPs and tetracycline (TC) to investigate the influence under various conditions, including sediment sizes, tidal cycles, and MP sizes, on the transport of MP-AT co-contaminants in tidal zones using a tidal cycle simulation system, which was designed to replicate the tidal dynamics and provide insights into the movement and behavior of contaminants. It was observed that MP-AT co-contaminants in tidal sediments exist in three distinct transport states. Smaller MP-AT co-contaminants (State 1) pass through sand pores and are widely distributed in the upper sediment layers, whereas larger MP-AT co-contaminants (State 2) concentrate in layers 1–5 due to size limitations. Agglomerated MP-AT co-contaminants (State 3), unable to pass through sand pores, accumulate at the bottom. Tidal cycles enhance MP-AT co-contaminant retention, while sand size (125–212 μm) limitedly affects their distribution. MP size played a crucial role, with larger MPs settling in layers 1–5 and smaller MPs remaining more dispersed. These findings emphasize the importance of MP size in affecting contaminant transport in tidal environments. Results from this research will contribute to the development of transport models and help predict the long-term environmental impact of MP-AT co-contaminants.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"372 ","pages":"Article 126072"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transport of microplastic-antibiotic co-contaminants in tidal zones\",\"authors\":\"Hemeihui Zhao , Min Yang , Bing Chen , Bo Liu , Baiyu Zhang\",\"doi\":\"10.1016/j.envpol.2025.126072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microplastics (MPs) and antibiotics (ATs) are emerging contaminants with recognized negative effects on marine ecosystems. MPs can adsorb and transport ATs, posing combined toxic effects to marine organisms. Despite growing concerns, research remains limited on the MP-AT co-contaminants in tidal zones, which are home to numerous aquatic species and represent a particularly susceptible ecosystem. This study used polyethylene (PE) MPs and tetracycline (TC) to investigate the influence under various conditions, including sediment sizes, tidal cycles, and MP sizes, on the transport of MP-AT co-contaminants in tidal zones using a tidal cycle simulation system, which was designed to replicate the tidal dynamics and provide insights into the movement and behavior of contaminants. It was observed that MP-AT co-contaminants in tidal sediments exist in three distinct transport states. Smaller MP-AT co-contaminants (State 1) pass through sand pores and are widely distributed in the upper sediment layers, whereas larger MP-AT co-contaminants (State 2) concentrate in layers 1–5 due to size limitations. Agglomerated MP-AT co-contaminants (State 3), unable to pass through sand pores, accumulate at the bottom. Tidal cycles enhance MP-AT co-contaminant retention, while sand size (125–212 μm) limitedly affects their distribution. MP size played a crucial role, with larger MPs settling in layers 1–5 and smaller MPs remaining more dispersed. These findings emphasize the importance of MP size in affecting contaminant transport in tidal environments. Results from this research will contribute to the development of transport models and help predict the long-term environmental impact of MP-AT co-contaminants.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"372 \",\"pages\":\"Article 126072\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125004452\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125004452","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Transport of microplastic-antibiotic co-contaminants in tidal zones
Microplastics (MPs) and antibiotics (ATs) are emerging contaminants with recognized negative effects on marine ecosystems. MPs can adsorb and transport ATs, posing combined toxic effects to marine organisms. Despite growing concerns, research remains limited on the MP-AT co-contaminants in tidal zones, which are home to numerous aquatic species and represent a particularly susceptible ecosystem. This study used polyethylene (PE) MPs and tetracycline (TC) to investigate the influence under various conditions, including sediment sizes, tidal cycles, and MP sizes, on the transport of MP-AT co-contaminants in tidal zones using a tidal cycle simulation system, which was designed to replicate the tidal dynamics and provide insights into the movement and behavior of contaminants. It was observed that MP-AT co-contaminants in tidal sediments exist in three distinct transport states. Smaller MP-AT co-contaminants (State 1) pass through sand pores and are widely distributed in the upper sediment layers, whereas larger MP-AT co-contaminants (State 2) concentrate in layers 1–5 due to size limitations. Agglomerated MP-AT co-contaminants (State 3), unable to pass through sand pores, accumulate at the bottom. Tidal cycles enhance MP-AT co-contaminant retention, while sand size (125–212 μm) limitedly affects their distribution. MP size played a crucial role, with larger MPs settling in layers 1–5 and smaller MPs remaining more dispersed. These findings emphasize the importance of MP size in affecting contaminant transport in tidal environments. Results from this research will contribute to the development of transport models and help predict the long-term environmental impact of MP-AT co-contaminants.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.