使用带运动约束的深度级联特征增强贝叶斯广义学习系统的机械臂运动控制策略。

Jiyong Zhou, Guoyu Zuo, Xiang Li, Shuangyue Yu, Shuaifeng Dong
{"title":"使用带运动约束的深度级联特征增强贝叶斯广义学习系统的机械臂运动控制策略。","authors":"Jiyong Zhou, Guoyu Zuo, Xiang Li, Shuangyue Yu, Shuaifeng Dong","doi":"10.1016/j.isatra.2025.02.027","DOIUrl":null,"url":null,"abstract":"<p><p>Intelligent control strategies can significantly enhance the efficiency of model parameter adjustment. However, existing intelligent motion control strategies for robotic arms based on the broad learning system lack sufficient accuracy and fail to account for the effects of joint motion limitations on overall control performance. To address the aforementioned challenges, this paper proposes a robotic arm motion control strategy based on a deep cascaded feature-enhanced Bayesian broad learning system with motion constraints (MC-DCBLS). Firstly, the motion control strategy based on a deep cascaded feature-enhanced Bayesian broad learning system (DCBBLS) is designed, which simplifies the modeling process and significantly improves control accuracy. Secondly, the motion constraint mechanism is introduced to optimize the control strategy to ensure that the robotic arm motion does not break through the physical limit. Finally, the parameter constraints of the control strategy network were obtained by introducing the Lyapunov theory to ensure the stability of the robotic arm motion control. The effectiveness of the proposed control strategy was validated through both simulations and physical experiments. The results demonstrated that the strategy significantly improved the accuracy of robotic arm motion control, with the root mean square error (RMSE) in position tracking reduced to 0.038 rad. This represents a 61.26% reduction in error compared to existing techniques.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion control strategy for robotic arm using deep cascaded feature-enhancement Bayesian broad learning system with motion constraints.\",\"authors\":\"Jiyong Zhou, Guoyu Zuo, Xiang Li, Shuangyue Yu, Shuaifeng Dong\",\"doi\":\"10.1016/j.isatra.2025.02.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intelligent control strategies can significantly enhance the efficiency of model parameter adjustment. However, existing intelligent motion control strategies for robotic arms based on the broad learning system lack sufficient accuracy and fail to account for the effects of joint motion limitations on overall control performance. To address the aforementioned challenges, this paper proposes a robotic arm motion control strategy based on a deep cascaded feature-enhanced Bayesian broad learning system with motion constraints (MC-DCBLS). Firstly, the motion control strategy based on a deep cascaded feature-enhanced Bayesian broad learning system (DCBBLS) is designed, which simplifies the modeling process and significantly improves control accuracy. Secondly, the motion constraint mechanism is introduced to optimize the control strategy to ensure that the robotic arm motion does not break through the physical limit. Finally, the parameter constraints of the control strategy network were obtained by introducing the Lyapunov theory to ensure the stability of the robotic arm motion control. The effectiveness of the proposed control strategy was validated through both simulations and physical experiments. The results demonstrated that the strategy significantly improved the accuracy of robotic arm motion control, with the root mean square error (RMSE) in position tracking reduced to 0.038 rad. This represents a 61.26% reduction in error compared to existing techniques.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.02.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.02.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion control strategy for robotic arm using deep cascaded feature-enhancement Bayesian broad learning system with motion constraints.

Intelligent control strategies can significantly enhance the efficiency of model parameter adjustment. However, existing intelligent motion control strategies for robotic arms based on the broad learning system lack sufficient accuracy and fail to account for the effects of joint motion limitations on overall control performance. To address the aforementioned challenges, this paper proposes a robotic arm motion control strategy based on a deep cascaded feature-enhanced Bayesian broad learning system with motion constraints (MC-DCBLS). Firstly, the motion control strategy based on a deep cascaded feature-enhanced Bayesian broad learning system (DCBBLS) is designed, which simplifies the modeling process and significantly improves control accuracy. Secondly, the motion constraint mechanism is introduced to optimize the control strategy to ensure that the robotic arm motion does not break through the physical limit. Finally, the parameter constraints of the control strategy network were obtained by introducing the Lyapunov theory to ensure the stability of the robotic arm motion control. The effectiveness of the proposed control strategy was validated through both simulations and physical experiments. The results demonstrated that the strategy significantly improved the accuracy of robotic arm motion control, with the root mean square error (RMSE) in position tracking reduced to 0.038 rad. This represents a 61.26% reduction in error compared to existing techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信