慢性疼痛的常见神经相关因素--静息态 fMRI 研究的系统回顾和荟萃分析。

IF 5.3 2区 医学 Q1 CLINICAL NEUROLOGY
Juliana Fiúza-Fernandes, Joana Pereira-Mendes, Madalena Esteves, Joaquim Radua, Maria Picó-Pérez, Hugo Leite-Almeida
{"title":"慢性疼痛的常见神经相关因素--静息态 fMRI 研究的系统回顾和荟萃分析。","authors":"Juliana Fiúza-Fernandes, Joana Pereira-Mendes, Madalena Esteves, Joaquim Radua, Maria Picó-Pérez, Hugo Leite-Almeida","doi":"10.1016/j.pnpbp.2025.111326","DOIUrl":null,"url":null,"abstract":"<p><p>Maladaptive brain plasticity has been reported in chronic pain (CP) conditions, though it remains unclear if there are common alterations across pathologies. Therefore, we systematically synthesized literature comparing resting-state functional magnetic resonance imaging (rs-fMRI) in CP patients and healthy controls (HC), and meta-analyzed data whenever applicable. Separate meta-analyses were performed for each method - (fractional) amplitude of low-frequency fluctuations (fALFF, ALFF), regional homogeneity (ReHo), seed-based connectivity (according to the seed) and independent component analysis (according to the network). In qualitative synthesis, sensory-discriminative pain processing - thalamus, insula, temporal and sensory cortices - and cognitive and emotional processing - cingulate, prefrontal and parietal cortices and precuneus - regions concentrated CP/HC differences. Meta-analyses revealed decreased ALFF and increased ReHo in the precuneus, increased fALFF in the left posterior insula and disrupted within- and cross-network connectivity of default mode network (DMN) nodes, as well as altered connectivity in top-down pain modulation pathways. Specifically, it showed decreased anterior and increased posterior components' representation within DMN, enhanced connectivity between the medial prefrontal cortex (mPFC, part of the DMN) and anterior insula (part of the salience network), and decreased mPFC connectivity with the periaqueductal gray matter (PAG). Collectively, results suggest that CP disrupts the natural functional organization of the brain, particularly impacting DMN nodes (mPFC and precuneus), insula and top-town pain modulation circuits.</p>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":" ","pages":"111326"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common neural correlates of chronic pain - A systematic review and meta-analysis of resting-state fMRI studies.\",\"authors\":\"Juliana Fiúza-Fernandes, Joana Pereira-Mendes, Madalena Esteves, Joaquim Radua, Maria Picó-Pérez, Hugo Leite-Almeida\",\"doi\":\"10.1016/j.pnpbp.2025.111326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maladaptive brain plasticity has been reported in chronic pain (CP) conditions, though it remains unclear if there are common alterations across pathologies. Therefore, we systematically synthesized literature comparing resting-state functional magnetic resonance imaging (rs-fMRI) in CP patients and healthy controls (HC), and meta-analyzed data whenever applicable. Separate meta-analyses were performed for each method - (fractional) amplitude of low-frequency fluctuations (fALFF, ALFF), regional homogeneity (ReHo), seed-based connectivity (according to the seed) and independent component analysis (according to the network). In qualitative synthesis, sensory-discriminative pain processing - thalamus, insula, temporal and sensory cortices - and cognitive and emotional processing - cingulate, prefrontal and parietal cortices and precuneus - regions concentrated CP/HC differences. Meta-analyses revealed decreased ALFF and increased ReHo in the precuneus, increased fALFF in the left posterior insula and disrupted within- and cross-network connectivity of default mode network (DMN) nodes, as well as altered connectivity in top-down pain modulation pathways. Specifically, it showed decreased anterior and increased posterior components' representation within DMN, enhanced connectivity between the medial prefrontal cortex (mPFC, part of the DMN) and anterior insula (part of the salience network), and decreased mPFC connectivity with the periaqueductal gray matter (PAG). Collectively, results suggest that CP disrupts the natural functional organization of the brain, particularly impacting DMN nodes (mPFC and precuneus), insula and top-town pain modulation circuits.</p>\",\"PeriodicalId\":54549,\"journal\":{\"name\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"volume\":\" \",\"pages\":\"111326\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pnpbp.2025.111326\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.pnpbp.2025.111326","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common neural correlates of chronic pain - A systematic review and meta-analysis of resting-state fMRI studies.

Maladaptive brain plasticity has been reported in chronic pain (CP) conditions, though it remains unclear if there are common alterations across pathologies. Therefore, we systematically synthesized literature comparing resting-state functional magnetic resonance imaging (rs-fMRI) in CP patients and healthy controls (HC), and meta-analyzed data whenever applicable. Separate meta-analyses were performed for each method - (fractional) amplitude of low-frequency fluctuations (fALFF, ALFF), regional homogeneity (ReHo), seed-based connectivity (according to the seed) and independent component analysis (according to the network). In qualitative synthesis, sensory-discriminative pain processing - thalamus, insula, temporal and sensory cortices - and cognitive and emotional processing - cingulate, prefrontal and parietal cortices and precuneus - regions concentrated CP/HC differences. Meta-analyses revealed decreased ALFF and increased ReHo in the precuneus, increased fALFF in the left posterior insula and disrupted within- and cross-network connectivity of default mode network (DMN) nodes, as well as altered connectivity in top-down pain modulation pathways. Specifically, it showed decreased anterior and increased posterior components' representation within DMN, enhanced connectivity between the medial prefrontal cortex (mPFC, part of the DMN) and anterior insula (part of the salience network), and decreased mPFC connectivity with the periaqueductal gray matter (PAG). Collectively, results suggest that CP disrupts the natural functional organization of the brain, particularly impacting DMN nodes (mPFC and precuneus), insula and top-town pain modulation circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
1.80%
发文量
153
审稿时长
56 days
期刊介绍: Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject. Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信