基于粗粒度观测的马尔可夫网络参数推断和非平衡识别。

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Bingjie Wu, Chen Jia
{"title":"基于粗粒度观测的马尔可夫网络参数推断和非平衡识别。","authors":"Bingjie Wu, Chen Jia","doi":"10.1103/PhysRevLett.134.087103","DOIUrl":null,"url":null,"abstract":"<p><p>Most experiments can only detect a set of coarse-grained clusters of a molecular system, while the internal microstates are often inaccessible. Here, based on an infinitely long coarse-grained trajectory, we obtain a set of sufficient statistics that extracts all statistic information of coarse-grained observations. Based on these sufficient statistics, we set up a theoretical framework of parameter inference and nonequilibrium identification for a general Markov network with an arbitrary number of microstates and arbitrary coarse-grained partitioning. Our framework can be used to identify whether the sufficient statistics are enough for empirical estimation of all unknown parameters and we can also provide a quantitative criterion that reveals nonequilibrium. Our nonequilibrium criterion generalizes the one obtained [J. Chem. Phys. 132, 041102 (2010)JCPSA60021-960610.1063/1.3294567] for a three-state system with two coarse-grained clusters and is capable of detecting a larger nonequilibrium region compared to the classical criterion based on autocorrelation functions.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 8","pages":"087103"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Inference and Nonequilibrium Identification for Markov Networks Based on Coarse-Grained Observations.\",\"authors\":\"Bingjie Wu, Chen Jia\",\"doi\":\"10.1103/PhysRevLett.134.087103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most experiments can only detect a set of coarse-grained clusters of a molecular system, while the internal microstates are often inaccessible. Here, based on an infinitely long coarse-grained trajectory, we obtain a set of sufficient statistics that extracts all statistic information of coarse-grained observations. Based on these sufficient statistics, we set up a theoretical framework of parameter inference and nonequilibrium identification for a general Markov network with an arbitrary number of microstates and arbitrary coarse-grained partitioning. Our framework can be used to identify whether the sufficient statistics are enough for empirical estimation of all unknown parameters and we can also provide a quantitative criterion that reveals nonequilibrium. Our nonequilibrium criterion generalizes the one obtained [J. Chem. Phys. 132, 041102 (2010)JCPSA60021-960610.1063/1.3294567] for a three-state system with two coarse-grained clusters and is capable of detecting a larger nonequilibrium region compared to the classical criterion based on autocorrelation functions.</p>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"134 8\",\"pages\":\"087103\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevLett.134.087103\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.087103","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大多数实验只能检测到分子系统的一组粗粒度簇,而内部微观状态往往无法获取。在此,我们基于无限长的粗粒度轨迹,获得了一组充分统计量,提取了粗粒度观测的所有统计信息。基于这些充分统计量,我们为具有任意数量微观状态和任意粗粒度分区的一般马尔可夫网络建立了一个参数推断和非平衡识别的理论框架。我们的框架可用于确定充分统计量是否足以对所有未知参数进行经验估计,我们还可以提供一个揭示非平衡的定量标准。我们的非平衡标准概括了[J. Chem. Phys. 132, 041102 (2010)JCPSA60021-960610.1063/1.3294567]针对具有两个粗粒簇的三态系统得到的标准,与基于自相关函数的经典标准相比,我们的标准能够检测到更大的非平衡区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Inference and Nonequilibrium Identification for Markov Networks Based on Coarse-Grained Observations.

Most experiments can only detect a set of coarse-grained clusters of a molecular system, while the internal microstates are often inaccessible. Here, based on an infinitely long coarse-grained trajectory, we obtain a set of sufficient statistics that extracts all statistic information of coarse-grained observations. Based on these sufficient statistics, we set up a theoretical framework of parameter inference and nonequilibrium identification for a general Markov network with an arbitrary number of microstates and arbitrary coarse-grained partitioning. Our framework can be used to identify whether the sufficient statistics are enough for empirical estimation of all unknown parameters and we can also provide a quantitative criterion that reveals nonequilibrium. Our nonequilibrium criterion generalizes the one obtained [J. Chem. Phys. 132, 041102 (2010)JCPSA60021-960610.1063/1.3294567] for a three-state system with two coarse-grained clusters and is capable of detecting a larger nonequilibrium region compared to the classical criterion based on autocorrelation functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信