散射介质单像素复场成像。

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-03-15 DOI:10.1364/OL.551397
Yining Hao, Wen Chen
{"title":"散射介质单像素复场成像。","authors":"Yining Hao, Wen Chen","doi":"10.1364/OL.551397","DOIUrl":null,"url":null,"abstract":"<p><p>Much research in optics was conducted to retrieve phase of the light field, e.g., via a reference wave (such as holography) or single-path optical diffraction. However, it is well recognized that a complete application of complex-field imaging (i.e., amplitude and phase) is still restricted by the existence of scattering media. In this Letter, we report high-resolution complex-field imaging with single-pixel detection, which can effectively suppress scattering effect. Complex fields are retrieved by using a series of collected single-pixel light intensities with an alternating projection (AP) method. A momentum and the denoising engine are integrated into the iterative process to increase convergence speed and reduce sampling ratios with quality enhancement of the retrieved complex fields. A series of optical experiments are designed and conducted, and it is experimentally demonstrated that the retrieved complex fields related to the object are of high quality. The proposed method could open an avenue for a wide range of applications related to complex-field imaging through scattering media.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 6","pages":"1949-1952"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-pixel complex-field imaging through scattering media.\",\"authors\":\"Yining Hao, Wen Chen\",\"doi\":\"10.1364/OL.551397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Much research in optics was conducted to retrieve phase of the light field, e.g., via a reference wave (such as holography) or single-path optical diffraction. However, it is well recognized that a complete application of complex-field imaging (i.e., amplitude and phase) is still restricted by the existence of scattering media. In this Letter, we report high-resolution complex-field imaging with single-pixel detection, which can effectively suppress scattering effect. Complex fields are retrieved by using a series of collected single-pixel light intensities with an alternating projection (AP) method. A momentum and the denoising engine are integrated into the iterative process to increase convergence speed and reduce sampling ratios with quality enhancement of the retrieved complex fields. A series of optical experiments are designed and conducted, and it is experimentally demonstrated that the retrieved complex fields related to the object are of high quality. The proposed method could open an avenue for a wide range of applications related to complex-field imaging through scattering media.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 6\",\"pages\":\"1949-1952\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.551397\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.551397","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

许多光学研究都是为了检索光场的相位,例如,通过参考波(如全息)或单路光学衍射。然而,由于散射介质的存在,复杂场成像(即振幅和相位成像)的完整应用仍然受到限制。在这篇论文中,我们报道了单像素检测的高分辨率复场成像,可以有效地抑制散射效应。采用交替投影法(AP)对采集到的一系列单像素光强进行复域检索。将动量和去噪引擎集成到迭代过程中,提高了收敛速度,降低了采样率,提高了检索到的复杂场的质量。设计并进行了一系列的光学实验,实验证明,检索到的与目标相关的复杂场具有较高的质量。所提出的方法可以为通过散射介质进行复杂场成像的广泛应用开辟道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-pixel complex-field imaging through scattering media.

Much research in optics was conducted to retrieve phase of the light field, e.g., via a reference wave (such as holography) or single-path optical diffraction. However, it is well recognized that a complete application of complex-field imaging (i.e., amplitude and phase) is still restricted by the existence of scattering media. In this Letter, we report high-resolution complex-field imaging with single-pixel detection, which can effectively suppress scattering effect. Complex fields are retrieved by using a series of collected single-pixel light intensities with an alternating projection (AP) method. A momentum and the denoising engine are integrated into the iterative process to increase convergence speed and reduce sampling ratios with quality enhancement of the retrieved complex fields. A series of optical experiments are designed and conducted, and it is experimentally demonstrated that the retrieved complex fields related to the object are of high quality. The proposed method could open an avenue for a wide range of applications related to complex-field imaging through scattering media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信