在常规蚊子(双翅目:Culicidae)样本处理过程中使用 ImageJ 进行数字化光学计数的复原力和精确度比较。

IF 2.1 3区 农林科学 Q1 ENTOMOLOGY
Ayla Faraji, Kelsey A Fairbanks, Ary Faraji, Christopher S Bibbs
{"title":"在常规蚊子(双翅目:Culicidae)样本处理过程中使用 ImageJ 进行数字化光学计数的复原力和精确度比较。","authors":"Ayla Faraji, Kelsey A Fairbanks, Ary Faraji, Christopher S Bibbs","doi":"10.1093/jisesa/ieaf026","DOIUrl":null,"url":null,"abstract":"<p><p>Surveillance is integral for the targeted and effective function of integrated vector management. However, the scale of surveillance efforts can be prohibitive on manpower, given the large number of traps set, collected, processed, and enumerated. For many public health agencies, the sheer effort of weekly trapping, combined with the processing of numerous traps, is a major capacity challenge. To reduce employee fatigue and increase throughput, estimation methods are used in a diagnostic capacity to determine threshold numbers of mosquitoes (Diptera: Culicidae) for operational decision-making. Historically, volume and mass measures correlated to a known number of mosquitoes are the oldest and most widely used within mosquito control programs. Image processing methods using digital counting software, such as ImageJ, have not been tested rigorously in the context of high throughput usage experienced in mosquito operations. We stress-tested volume, mass, and image processing methods using sample calibrations from early in the year and applied them throughout a mosquito active season. We additionally tested resilience with samples that had been frozen, desiccated, old, or from an excessively large trap collection. Furthermore, we compared magnitudes of error after intentionally deviating from best practices. In all cases, mass and volume encountered significant errors. In contrast, the digitized-optical counting method was resilient to going long periods of use without recalibrating, handling different species compositions, and processing aged or damaged samples. If a program has limited logistical power, the aforementioned image-processing method confers the best balance of accuracy and expediency for time-sensitive workloads and efficient operational decision making.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"25 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908421/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative resilience and precision of digitized optical counting using ImageJ during routine mosquito (Diptera: Culicidae) sample processing.\",\"authors\":\"Ayla Faraji, Kelsey A Fairbanks, Ary Faraji, Christopher S Bibbs\",\"doi\":\"10.1093/jisesa/ieaf026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surveillance is integral for the targeted and effective function of integrated vector management. However, the scale of surveillance efforts can be prohibitive on manpower, given the large number of traps set, collected, processed, and enumerated. For many public health agencies, the sheer effort of weekly trapping, combined with the processing of numerous traps, is a major capacity challenge. To reduce employee fatigue and increase throughput, estimation methods are used in a diagnostic capacity to determine threshold numbers of mosquitoes (Diptera: Culicidae) for operational decision-making. Historically, volume and mass measures correlated to a known number of mosquitoes are the oldest and most widely used within mosquito control programs. Image processing methods using digital counting software, such as ImageJ, have not been tested rigorously in the context of high throughput usage experienced in mosquito operations. We stress-tested volume, mass, and image processing methods using sample calibrations from early in the year and applied them throughout a mosquito active season. We additionally tested resilience with samples that had been frozen, desiccated, old, or from an excessively large trap collection. Furthermore, we compared magnitudes of error after intentionally deviating from best practices. In all cases, mass and volume encountered significant errors. In contrast, the digitized-optical counting method was resilient to going long periods of use without recalibrating, handling different species compositions, and processing aged or damaged samples. If a program has limited logistical power, the aforementioned image-processing method confers the best balance of accuracy and expediency for time-sensitive workloads and efficient operational decision making.</p>\",\"PeriodicalId\":16156,\"journal\":{\"name\":\"Journal of Insect Science\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jisesa/ieaf026\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieaf026","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative resilience and precision of digitized optical counting using ImageJ during routine mosquito (Diptera: Culicidae) sample processing.

Surveillance is integral for the targeted and effective function of integrated vector management. However, the scale of surveillance efforts can be prohibitive on manpower, given the large number of traps set, collected, processed, and enumerated. For many public health agencies, the sheer effort of weekly trapping, combined with the processing of numerous traps, is a major capacity challenge. To reduce employee fatigue and increase throughput, estimation methods are used in a diagnostic capacity to determine threshold numbers of mosquitoes (Diptera: Culicidae) for operational decision-making. Historically, volume and mass measures correlated to a known number of mosquitoes are the oldest and most widely used within mosquito control programs. Image processing methods using digital counting software, such as ImageJ, have not been tested rigorously in the context of high throughput usage experienced in mosquito operations. We stress-tested volume, mass, and image processing methods using sample calibrations from early in the year and applied them throughout a mosquito active season. We additionally tested resilience with samples that had been frozen, desiccated, old, or from an excessively large trap collection. Furthermore, we compared magnitudes of error after intentionally deviating from best practices. In all cases, mass and volume encountered significant errors. In contrast, the digitized-optical counting method was resilient to going long periods of use without recalibrating, handling different species compositions, and processing aged or damaged samples. If a program has limited logistical power, the aforementioned image-processing method confers the best balance of accuracy and expediency for time-sensitive workloads and efficient operational decision making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Insect Science
Journal of Insect Science 生物-昆虫学
CiteScore
3.70
自引率
0.00%
发文量
80
审稿时长
7.5 months
期刊介绍: The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信