IF 14.7 1区 医学 Q1 NEUROSCIENCES
Kathy Y M Cheung, Aditya Nair, Ling-Yun Li, Mikhail G Shapiro, David J Anderson
{"title":"Population coding of predator imminence in the hypothalamus.","authors":"Kathy Y M Cheung, Aditya Nair, Ling-Yun Li, Mikhail G Shapiro, David J Anderson","doi":"10.1016/j.neuron.2025.02.003","DOIUrl":null,"url":null,"abstract":"<p><p>Hypothalamic VMHdm<sup>SF1</sup> neurons are activated by predator cues and are necessary and sufficient for instinctive defensive responses. However, such data do not distinguish which features of a predator encounter are encoded by VMHdm<sup>SF1</sup> neural activity. To address this issue, we imaged VMHdm<sup>SF1</sup> neurons at single-cell resolution in freely behaving mice exposed to a natural predator in varying contexts. Our results reveal that VMHdm<sup>SF1</sup> neurons do not encode different defensive behaviors but rather represent predator identity and multiple predator-evoked internal states, including threat-evoked fear/anxiety, arousal or neophobia, predator imminence, and safety. Notably, threat and safety are encoded bi-directionally by anti-correlated subpopulations. Strikingly, individual differences in predator defensiveness are correlated with individual differences in VMHdm<sup>SF1</sup> response dynamics. Thus, different threat-related internal state variables are encoded by distinct neuronal subpopulations within a genetically defined, anatomically restricted hypothalamic cell class.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.02.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

下丘脑 VMHdmSF1 神经元被捕食者线索激活,是本能防御反应的必要和充分条件。然而,这些数据并没有区分捕食者遭遇的哪些特征是由 VMHdmSF1 神经活动编码的。为了解决这个问题,我们以单细胞分辨率对自由行为小鼠的 VMHdmSF1 神经元进行了成像。我们的研究结果表明,VMHdmSF1 神经元并不编码不同的防御行为,而是代表捕食者身份和多种捕食者诱发的内部状态,包括威胁诱发的恐惧/焦虑、唤醒或恐新症、捕食者临近和安全。值得注意的是,威胁和安全是由反相关亚群双向编码的。引人注目的是,捕食者防御性的个体差异与 VMHdmSF1 反应动态的个体差异相关。因此,不同的威胁相关内部状态变量是由基因定义的、解剖学限制的下丘脑细胞类别中不同的神经元亚群编码的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Population coding of predator imminence in the hypothalamus.

Hypothalamic VMHdmSF1 neurons are activated by predator cues and are necessary and sufficient for instinctive defensive responses. However, such data do not distinguish which features of a predator encounter are encoded by VMHdmSF1 neural activity. To address this issue, we imaged VMHdmSF1 neurons at single-cell resolution in freely behaving mice exposed to a natural predator in varying contexts. Our results reveal that VMHdmSF1 neurons do not encode different defensive behaviors but rather represent predator identity and multiple predator-evoked internal states, including threat-evoked fear/anxiety, arousal or neophobia, predator imminence, and safety. Notably, threat and safety are encoded bi-directionally by anti-correlated subpopulations. Strikingly, individual differences in predator defensiveness are correlated with individual differences in VMHdmSF1 response dynamics. Thus, different threat-related internal state variables are encoded by distinct neuronal subpopulations within a genetically defined, anatomically restricted hypothalamic cell class.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信