弓形虫天然反义转录本参与细胞应激反应。

IF 1.4 4区 医学 Q3 PARASITOLOGY
Yue Gou, Laura Agudelo Vallejo, Ana Podadera, Kenneth Ng, Sirinart Ananvoranich
{"title":"弓形虫天然反义转录本参与细胞应激反应。","authors":"Yue Gou,&nbsp;Laura Agudelo Vallejo,&nbsp;Ana Podadera,&nbsp;Kenneth Ng,&nbsp;Sirinart Ananvoranich","doi":"10.1016/j.exppara.2025.108931","DOIUrl":null,"url":null,"abstract":"<div><div>Natural antisense transcripts (NATs), as a major subset of long non-coding RNAs (lncRNAs), are derived from every chromosome of <em>Toxoplasma gondii</em>, with the highest occurrence from ChrIa (18.4 NATs per Mbp) and the lowest from ChrIX (3.9 NATs per Mbp). GO analysis indicates that genes, which mRNA-NAT pairs are derived, are important for house-keeping and essential activities of <em>T. gondii</em>. Approximately half of protein encoding genes, whose loci also generate NATs, are involved in biological processes of metabolic processes and protein biochemistry and have canonical catalytic or binding activities. Using NAT of ubiquitin-like protease 1 (<em>TgUlp1</em>-NAT) as our study model, we showed that <em>TgUlp1</em>-NAT expression is part of cellular stress responses. Using a nanoluc reporter system, we confirmed that electroporation or membrane destabilization significantly induced <em>TgUlp1</em>-NAT expression. When the extracellular parasites were exposed to media containing high potassium, high sodium or altered osmotic pressure, <em>TgUlp1</em>-NAT expression was significantly down-regulated. In addition, two <em>TgUlp1</em>-NAT variants were detected in stressed <em>T. gondii</em>. One is an intron-retained variant, and the other is a spliced variant, referred to as <em>TgUlp1</em>-NATa and <em>TgUlp1</em>-NATb, respectively. The intronic sequence is 368 nts long, where regulatory small ncRNAs were derived. Taken together, we have confirmed that NAT expressions and functions are involved in cellular adaptation that allows <em>T. gondii</em> recover from stresses.</div></div>","PeriodicalId":12117,"journal":{"name":"Experimental parasitology","volume":"271 ","pages":"Article 108931"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Involvement of Toxoplasma gondii natural antisense transcripts in cellular stress responses\",\"authors\":\"Yue Gou,&nbsp;Laura Agudelo Vallejo,&nbsp;Ana Podadera,&nbsp;Kenneth Ng,&nbsp;Sirinart Ananvoranich\",\"doi\":\"10.1016/j.exppara.2025.108931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Natural antisense transcripts (NATs), as a major subset of long non-coding RNAs (lncRNAs), are derived from every chromosome of <em>Toxoplasma gondii</em>, with the highest occurrence from ChrIa (18.4 NATs per Mbp) and the lowest from ChrIX (3.9 NATs per Mbp). GO analysis indicates that genes, which mRNA-NAT pairs are derived, are important for house-keeping and essential activities of <em>T. gondii</em>. Approximately half of protein encoding genes, whose loci also generate NATs, are involved in biological processes of metabolic processes and protein biochemistry and have canonical catalytic or binding activities. Using NAT of ubiquitin-like protease 1 (<em>TgUlp1</em>-NAT) as our study model, we showed that <em>TgUlp1</em>-NAT expression is part of cellular stress responses. Using a nanoluc reporter system, we confirmed that electroporation or membrane destabilization significantly induced <em>TgUlp1</em>-NAT expression. When the extracellular parasites were exposed to media containing high potassium, high sodium or altered osmotic pressure, <em>TgUlp1</em>-NAT expression was significantly down-regulated. In addition, two <em>TgUlp1</em>-NAT variants were detected in stressed <em>T. gondii</em>. One is an intron-retained variant, and the other is a spliced variant, referred to as <em>TgUlp1</em>-NATa and <em>TgUlp1</em>-NATb, respectively. The intronic sequence is 368 nts long, where regulatory small ncRNAs were derived. Taken together, we have confirmed that NAT expressions and functions are involved in cellular adaptation that allows <em>T. gondii</em> recover from stresses.</div></div>\",\"PeriodicalId\":12117,\"journal\":{\"name\":\"Experimental parasitology\",\"volume\":\"271 \",\"pages\":\"Article 108931\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014489425000360\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014489425000360","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

天然反义转录本(Natural antisense transcripts, NATs)是长链非编码rna (long - non-coding rna, lncRNAs)的一个主要亚群,存在于弓形虫的每条染色体中,其中最高的是chra染色体(18.4个/ Mbp),最低的是chrx染色体(3.9个/ Mbp)。氧化石墨烯分析表明,由mRNA-NAT对衍生的基因对弓形虫的保家和基本活动至关重要。大约一半的蛋白质编码基因参与代谢过程和蛋白质生物化学的生物学过程,具有典型的催化或结合活性,其位点也产生NATs。使用泛素样蛋白酶1 (TgUlp1-NAT)的NAT作为我们的研究模型,我们发现TgUlp1-NAT的表达是细胞应激反应的一部分。利用纳米报告系统,我们证实了电穿孔或膜不稳定可显著诱导TgUlp1-NAT表达。当细胞外寄生虫暴露于高钾、高钠或渗透压改变的培养基时,TgUlp1-NAT的表达显著下调。此外,在应激型弓形虫中检测到两种TgUlp1-NAT变异。一种是内含子保留变体,另一种是剪接变体,分别称为TgUlp1-NATa和TgUlp1-NATb。内含子序列长368 ncrna,从这里衍生出了调节性小ncrna。综上所述,我们已经证实了NAT的表达和功能参与了允许弓形虫从压力中恢复的细胞适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Involvement of Toxoplasma gondii natural antisense transcripts in cellular stress responses

Involvement of Toxoplasma gondii natural antisense transcripts in cellular stress responses
Natural antisense transcripts (NATs), as a major subset of long non-coding RNAs (lncRNAs), are derived from every chromosome of Toxoplasma gondii, with the highest occurrence from ChrIa (18.4 NATs per Mbp) and the lowest from ChrIX (3.9 NATs per Mbp). GO analysis indicates that genes, which mRNA-NAT pairs are derived, are important for house-keeping and essential activities of T. gondii. Approximately half of protein encoding genes, whose loci also generate NATs, are involved in biological processes of metabolic processes and protein biochemistry and have canonical catalytic or binding activities. Using NAT of ubiquitin-like protease 1 (TgUlp1-NAT) as our study model, we showed that TgUlp1-NAT expression is part of cellular stress responses. Using a nanoluc reporter system, we confirmed that electroporation or membrane destabilization significantly induced TgUlp1-NAT expression. When the extracellular parasites were exposed to media containing high potassium, high sodium or altered osmotic pressure, TgUlp1-NAT expression was significantly down-regulated. In addition, two TgUlp1-NAT variants were detected in stressed T. gondii. One is an intron-retained variant, and the other is a spliced variant, referred to as TgUlp1-NATa and TgUlp1-NATb, respectively. The intronic sequence is 368 nts long, where regulatory small ncRNAs were derived. Taken together, we have confirmed that NAT expressions and functions are involved in cellular adaptation that allows T. gondii recover from stresses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental parasitology
Experimental parasitology 医学-寄生虫学
CiteScore
3.10
自引率
4.80%
发文量
160
审稿时长
3 months
期刊介绍: Experimental Parasitology emphasizes modern approaches to parasitology, including molecular biology and immunology. The journal features original research papers on the physiological, metabolic, immunologic, biochemical, nutritional, and chemotherapeutic aspects of parasites and host-parasite relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信