Yuyu Jiang, Yunkai Zhang, Xiaohui Wang, Yan Xiang, Zeting Wang, Bo Wang, Yingying Ding, Ying Gao, Bing Rui, Jie Bai, Yue Ding, Chang Chen, Zhenzhen Zhan, Xingguang Liu
{"title":"磷酸酶 PHLPP1 是控制肺纤维化的肺泡-巨噬细胞内在转录检查点。","authors":"Yuyu Jiang, Yunkai Zhang, Xiaohui Wang, Yan Xiang, Zeting Wang, Bo Wang, Yingying Ding, Ying Gao, Bing Rui, Jie Bai, Yue Ding, Chang Chen, Zhenzhen Zhan, Xingguang Liu","doi":"10.1016/j.celrep.2025.115399","DOIUrl":null,"url":null,"abstract":"<p><p>Alveolar macrophages (AMs) are crucial for lung homeostasis, and their dysfunction causes uncontrolled fibrotic responses and pulmonary disorders. Protein phosphatases control multiple cellular events. However, whether nuclear phosphatases cooperate with histone modifiers to affect pulmonary fibrosis progress remains obscure. Here, we identified pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) as a key protective factor for pulmonary fibrosis. Transcriptomics and epigenomics data confirmed that PHLPP1 selectively targeted Kruppel-like factor 4 (KLF4) for transcriptional inhibition in AMs. Nuclear PHLPP1 directly bound and dephosphorylated histone deacetylase 8 (HDAC8) at serine 39, thereby enhancing its deacetylase enzyme activity and subsequently suppressing KLF4 expression via the decreased histone acetylation and chromatin accessibility. Thus, loss of PHLPP1 amplified KLF4-centric profibrotic transcriptional program in AMs, while intratracheal administration of Klf4-short hairpin RNA (shRNA) adeno-associated virus ameliorated lung fibrosis in PHLPP1-deficient mice. Our study implies that targeting decreased PHLPP1 in AMs might be a promising therapeutic strategy for pulmonary fibrosis.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115399"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphatase PHLPP1 is an alveolar-macrophage-intrinsic transcriptional checkpoint controlling pulmonary fibrosis.\",\"authors\":\"Yuyu Jiang, Yunkai Zhang, Xiaohui Wang, Yan Xiang, Zeting Wang, Bo Wang, Yingying Ding, Ying Gao, Bing Rui, Jie Bai, Yue Ding, Chang Chen, Zhenzhen Zhan, Xingguang Liu\",\"doi\":\"10.1016/j.celrep.2025.115399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alveolar macrophages (AMs) are crucial for lung homeostasis, and their dysfunction causes uncontrolled fibrotic responses and pulmonary disorders. Protein phosphatases control multiple cellular events. However, whether nuclear phosphatases cooperate with histone modifiers to affect pulmonary fibrosis progress remains obscure. Here, we identified pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) as a key protective factor for pulmonary fibrosis. Transcriptomics and epigenomics data confirmed that PHLPP1 selectively targeted Kruppel-like factor 4 (KLF4) for transcriptional inhibition in AMs. Nuclear PHLPP1 directly bound and dephosphorylated histone deacetylase 8 (HDAC8) at serine 39, thereby enhancing its deacetylase enzyme activity and subsequently suppressing KLF4 expression via the decreased histone acetylation and chromatin accessibility. Thus, loss of PHLPP1 amplified KLF4-centric profibrotic transcriptional program in AMs, while intratracheal administration of Klf4-short hairpin RNA (shRNA) adeno-associated virus ameliorated lung fibrosis in PHLPP1-deficient mice. Our study implies that targeting decreased PHLPP1 in AMs might be a promising therapeutic strategy for pulmonary fibrosis.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":\"44 3\",\"pages\":\"115399\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2025.115399\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115399","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Phosphatase PHLPP1 is an alveolar-macrophage-intrinsic transcriptional checkpoint controlling pulmonary fibrosis.
Alveolar macrophages (AMs) are crucial for lung homeostasis, and their dysfunction causes uncontrolled fibrotic responses and pulmonary disorders. Protein phosphatases control multiple cellular events. However, whether nuclear phosphatases cooperate with histone modifiers to affect pulmonary fibrosis progress remains obscure. Here, we identified pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) as a key protective factor for pulmonary fibrosis. Transcriptomics and epigenomics data confirmed that PHLPP1 selectively targeted Kruppel-like factor 4 (KLF4) for transcriptional inhibition in AMs. Nuclear PHLPP1 directly bound and dephosphorylated histone deacetylase 8 (HDAC8) at serine 39, thereby enhancing its deacetylase enzyme activity and subsequently suppressing KLF4 expression via the decreased histone acetylation and chromatin accessibility. Thus, loss of PHLPP1 amplified KLF4-centric profibrotic transcriptional program in AMs, while intratracheal administration of Klf4-short hairpin RNA (shRNA) adeno-associated virus ameliorated lung fibrosis in PHLPP1-deficient mice. Our study implies that targeting decreased PHLPP1 in AMs might be a promising therapeutic strategy for pulmonary fibrosis.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.