从山地土壤中提取的双功能内切葡聚糖酶/葡甘露聚糖酶的生物化学特征。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Justice Kipkorir Rono, Qingyun Zhang, Yong He, Shaochen Wang, Yunbin Lyu, Zhi Min Yang, Zhiyang Feng
{"title":"从山地土壤中提取的双功能内切葡聚糖酶/葡甘露聚糖酶的生物化学特征。","authors":"Justice Kipkorir Rono, Qingyun Zhang, Yong He, Shaochen Wang, Yunbin Lyu, Zhi Min Yang, Zhiyang Feng","doi":"10.1007/s10529-025-03574-8","DOIUrl":null,"url":null,"abstract":"<p><p>Metagenomics is increasingly recognized as a vital technique for exploring uncultured microorganisms, with one key application being the discovery of novel enzymes for industrial use. This study identified an endoglucanase gene from soil metagenome, termed ZFEG1801, which was expressed in E. coli BL21, purified, and characterized for its biochemical properties. The 72.8 kDa recombinant protein exhibited hydrolytic activity against sodium carboxymethyl cellulose (CMC) and konjac glucomannan (KG), with activities of 12.1 U/mg and 42.1 U/mg, respectively. The enzyme displayed optimal activity at pH 5 for CMC and pH 6 for KG, with broad pH stability ranging from 5 to 9. The optimal temperature was 40 °C, and it remained thermally stable between 20 and 40 °C, retaining over 60% of its activity. The enzyme activity remained stable in the presence of most metal ions; however, CMCase activity was inhibited by Cu<sup>2+</sup>, while glucomannanase activity was inhibited by Mn<sup>2+</sup>, Fe<sup>3+</sup>, and Ca<sup>2+</sup>. The catalytic efficiency towards both substrates was reduced by addition of SDS, DMSO, ethanol, isopropanol and acetonitrile. The V<sub>max</sub> and K<sub>m</sub> of the purified recombinant enzyme were 106.4 μmol/L/min and 4.9 mg/mL for CMC, and 833.3 μmol/L/min and 11.1 mg/mL for KG, respectively. The dual catalytic properties of ZFEG1801, broad pH stability and resistance to additives, demonstrate its potential for use in various biomass degradation processes.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"33"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemical characterization of a bilfunctional endoglucanase/glucomannanase derived from mountain soil.\",\"authors\":\"Justice Kipkorir Rono, Qingyun Zhang, Yong He, Shaochen Wang, Yunbin Lyu, Zhi Min Yang, Zhiyang Feng\",\"doi\":\"10.1007/s10529-025-03574-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metagenomics is increasingly recognized as a vital technique for exploring uncultured microorganisms, with one key application being the discovery of novel enzymes for industrial use. This study identified an endoglucanase gene from soil metagenome, termed ZFEG1801, which was expressed in E. coli BL21, purified, and characterized for its biochemical properties. The 72.8 kDa recombinant protein exhibited hydrolytic activity against sodium carboxymethyl cellulose (CMC) and konjac glucomannan (KG), with activities of 12.1 U/mg and 42.1 U/mg, respectively. The enzyme displayed optimal activity at pH 5 for CMC and pH 6 for KG, with broad pH stability ranging from 5 to 9. The optimal temperature was 40 °C, and it remained thermally stable between 20 and 40 °C, retaining over 60% of its activity. The enzyme activity remained stable in the presence of most metal ions; however, CMCase activity was inhibited by Cu<sup>2+</sup>, while glucomannanase activity was inhibited by Mn<sup>2+</sup>, Fe<sup>3+</sup>, and Ca<sup>2+</sup>. The catalytic efficiency towards both substrates was reduced by addition of SDS, DMSO, ethanol, isopropanol and acetonitrile. The V<sub>max</sub> and K<sub>m</sub> of the purified recombinant enzyme were 106.4 μmol/L/min and 4.9 mg/mL for CMC, and 833.3 μmol/L/min and 11.1 mg/mL for KG, respectively. The dual catalytic properties of ZFEG1801, broad pH stability and resistance to additives, demonstrate its potential for use in various biomass degradation processes.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\"47 2\",\"pages\":\"33\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-025-03574-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03574-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

宏基因组学越来越被认为是探索未培养微生物的重要技术,其中一个关键应用是发现用于工业用途的新型酶。本研究从土壤宏基因组中鉴定出一个内切葡聚糖酶基因,命名为ZFEG1801,该基因在大肠杆菌BL21中表达并纯化,并对其生化特性进行了表征。72.8 kDa重组蛋白对羧甲基纤维素钠(CMC)和魔芋葡甘露聚糖(KG)具有水解活性,活性分别为12.1 U/mg和42.1 U/mg。该酶在pH为5和pH为6时对CMC和KG表现出最佳活性,pH稳定范围为5 ~ 9。最佳温度为40℃,在20 ~ 40℃范围内保持热稳定性,活性保持在60%以上。在大多数金属离子存在下,酶活性保持稳定;Cu2+对CMCase活性有抑制作用,而Mn2+、Fe3+和Ca2+对葡萄糖甘露聚糖酶活性有抑制作用。SDS、DMSO、乙醇、异丙醇和乙腈的加入降低了对两种底物的催化效率。重组酶对CMC的Vmax和Km分别为106.4 μmol/L/min和4.9 mg/mL,对KG的Vmax和Km分别为833.3 μmol/L/min和11.1 mg/mL。ZFEG1801的双重催化性能、广泛的pH稳定性和对添加剂的抗性,证明了它在各种生物质降解过程中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biochemical characterization of a bilfunctional endoglucanase/glucomannanase derived from mountain soil.

Metagenomics is increasingly recognized as a vital technique for exploring uncultured microorganisms, with one key application being the discovery of novel enzymes for industrial use. This study identified an endoglucanase gene from soil metagenome, termed ZFEG1801, which was expressed in E. coli BL21, purified, and characterized for its biochemical properties. The 72.8 kDa recombinant protein exhibited hydrolytic activity against sodium carboxymethyl cellulose (CMC) and konjac glucomannan (KG), with activities of 12.1 U/mg and 42.1 U/mg, respectively. The enzyme displayed optimal activity at pH 5 for CMC and pH 6 for KG, with broad pH stability ranging from 5 to 9. The optimal temperature was 40 °C, and it remained thermally stable between 20 and 40 °C, retaining over 60% of its activity. The enzyme activity remained stable in the presence of most metal ions; however, CMCase activity was inhibited by Cu2+, while glucomannanase activity was inhibited by Mn2+, Fe3+, and Ca2+. The catalytic efficiency towards both substrates was reduced by addition of SDS, DMSO, ethanol, isopropanol and acetonitrile. The Vmax and Km of the purified recombinant enzyme were 106.4 μmol/L/min and 4.9 mg/mL for CMC, and 833.3 μmol/L/min and 11.1 mg/mL for KG, respectively. The dual catalytic properties of ZFEG1801, broad pH stability and resistance to additives, demonstrate its potential for use in various biomass degradation processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信