Katherine M. Murphy, Brandon S. Johnson, Courtney Harmon, Jorge Gutierrez, Hudanyun Sheng, Samuel Kenney, Katia Gutierrez-Ortega, Janithri Wickramanayake, Annika Fischer, Autumn Brown, Kirk J. Czymmek, Philip D. Bates, Doug K. Allen, Malia A. Gehan
{"title":"过量叶油通过减少烟草气孔孔径调节植物非生物胁迫反应","authors":"Katherine M. Murphy, Brandon S. Johnson, Courtney Harmon, Jorge Gutierrez, Hudanyun Sheng, Samuel Kenney, Katia Gutierrez-Ortega, Janithri Wickramanayake, Annika Fischer, Autumn Brown, Kirk J. Czymmek, Philip D. Bates, Doug K. Allen, Malia A. Gehan","doi":"10.1111/tpj.70067","DOIUrl":null,"url":null,"abstract":"<p>High lipid producing (HLP) tobacco (<i>Nicotiana tabacum</i>) is a potential biofuel crop that produces an excess of 30% dry weight as lipid bodies in the form of triacylglycerol. While using HLP tobacco as a sustainable fuel source is promising, it has not yet been tested for its tolerance to warmer environments that are expected in the near future as a result of climate change. We found that HLP tobacco had reduced stomatal conductance, which results in increased leaf temperatures up to 1.5°C higher under control and high temperature (38°C day/28°C night) conditions, reduced transpiration, and reduced CO<sub>2</sub> assimilation. We hypothesize this reduction in stomatal conductance is due to the presence of excessive, large lipid droplets in HLP guard cells imaged using confocal microscopy. High temperatures also significantly reduced total fatty acid levels by 55% in HLP plants; thus, additional engineering may be needed to maintain high titers of leaf oil under future climate conditions. High-throughput image analysis techniques using open-source image analysis platform PlantCV for thermal image analysis (plant temperature), stomata microscopy image analysis (stomatal conductance), and fluorescence image analysis (photosynthetic efficiency) were developed and applied in this study. A corresponding set of PlantCV tutorials are provided to enable similar studies focused on phenotyping future crops under adverse conditions.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 6","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70067","citationCount":"0","resultStr":"{\"title\":\"Excessive leaf oil modulates the plant abiotic stress response via reduced stomatal aperture in tobacco (Nicotiana tabacum)\",\"authors\":\"Katherine M. Murphy, Brandon S. Johnson, Courtney Harmon, Jorge Gutierrez, Hudanyun Sheng, Samuel Kenney, Katia Gutierrez-Ortega, Janithri Wickramanayake, Annika Fischer, Autumn Brown, Kirk J. Czymmek, Philip D. Bates, Doug K. Allen, Malia A. Gehan\",\"doi\":\"10.1111/tpj.70067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High lipid producing (HLP) tobacco (<i>Nicotiana tabacum</i>) is a potential biofuel crop that produces an excess of 30% dry weight as lipid bodies in the form of triacylglycerol. While using HLP tobacco as a sustainable fuel source is promising, it has not yet been tested for its tolerance to warmer environments that are expected in the near future as a result of climate change. We found that HLP tobacco had reduced stomatal conductance, which results in increased leaf temperatures up to 1.5°C higher under control and high temperature (38°C day/28°C night) conditions, reduced transpiration, and reduced CO<sub>2</sub> assimilation. We hypothesize this reduction in stomatal conductance is due to the presence of excessive, large lipid droplets in HLP guard cells imaged using confocal microscopy. High temperatures also significantly reduced total fatty acid levels by 55% in HLP plants; thus, additional engineering may be needed to maintain high titers of leaf oil under future climate conditions. High-throughput image analysis techniques using open-source image analysis platform PlantCV for thermal image analysis (plant temperature), stomata microscopy image analysis (stomatal conductance), and fluorescence image analysis (photosynthetic efficiency) were developed and applied in this study. A corresponding set of PlantCV tutorials are provided to enable similar studies focused on phenotyping future crops under adverse conditions.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"121 6\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70067\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70067\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70067","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Excessive leaf oil modulates the plant abiotic stress response via reduced stomatal aperture in tobacco (Nicotiana tabacum)
High lipid producing (HLP) tobacco (Nicotiana tabacum) is a potential biofuel crop that produces an excess of 30% dry weight as lipid bodies in the form of triacylglycerol. While using HLP tobacco as a sustainable fuel source is promising, it has not yet been tested for its tolerance to warmer environments that are expected in the near future as a result of climate change. We found that HLP tobacco had reduced stomatal conductance, which results in increased leaf temperatures up to 1.5°C higher under control and high temperature (38°C day/28°C night) conditions, reduced transpiration, and reduced CO2 assimilation. We hypothesize this reduction in stomatal conductance is due to the presence of excessive, large lipid droplets in HLP guard cells imaged using confocal microscopy. High temperatures also significantly reduced total fatty acid levels by 55% in HLP plants; thus, additional engineering may be needed to maintain high titers of leaf oil under future climate conditions. High-throughput image analysis techniques using open-source image analysis platform PlantCV for thermal image analysis (plant temperature), stomata microscopy image analysis (stomatal conductance), and fluorescence image analysis (photosynthetic efficiency) were developed and applied in this study. A corresponding set of PlantCV tutorials are provided to enable similar studies focused on phenotyping future crops under adverse conditions.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.