通过设计整合绿色分析化学和分析质量:散装和吸入制剂中埃斯芬汀RP-UPLC方法开发的创新方法

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mohan Goud Vanga, Sarad Pawar Naik Bukke, Praveen Kumar Kusuma, Bayapa Reddy Narapureddy, Chandrashekar Thalluri
{"title":"通过设计整合绿色分析化学和分析质量:散装和吸入制剂中埃斯芬汀RP-UPLC方法开发的创新方法","authors":"Mohan Goud Vanga,&nbsp;Sarad Pawar Naik Bukke,&nbsp;Praveen Kumar Kusuma,&nbsp;Bayapa Reddy Narapureddy,&nbsp;Chandrashekar Thalluri","doi":"10.1186/s13065-025-01448-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Chronic obstructive pulmonary disease (COPD) is a significant global health issue, worsened by pollution and modernisation. Ensifentrine (EFT), a new dual inhibitor of phosphodiesterase PDE3 and PDE4, is being developed for inhalation to target airway inflammation, bronchodilation, and ciliary function in COPD treatment.</p><h3>Objective</h3><p>This study aims to develop and validate a new quantification method for Ensifentrine, as no previous techniques are available, by integrating analytical quality-by-design (AQbD) and green analytical chemistry (GAC) principles.</p><h3>Methods</h3><p>An AQbD framework, utilizing Design-expert<sup>®</sup> software and a central composite design, optimized the RP-UPLC method. The optimized conditions involved isocratic separation on an ACQUITY UPLC HSS C18 SB column at ambient temperature, with a mobile phase of 0.01 N KH<sub>2</sub>PO<sub>4</sub> (pH 5.4) and acetonitrile (66.4:33.6 v/v), a flow rate of 0.27 mL/min, and PDA detection at 272.0 nm.</p><h3>Results</h3><p>The statistical analysis confirmed the model’s significance and normal distribution. The method, validated according to ICH guidelines, showed good linearity (r<sup>2</sup> = 0.9997) over a range of 3.75–22.5 μg/mL, with an LOD of 3.3 μg/mL and LOQ of 10 μg/mL. It was successfully applied to bulk materials and pharmaceutical formulations with statistical comparisons.</p><h3>Green chemistry assessment</h3><p>The greenness of the developed method was evaluated using tools such as ComplexMoGAPI, AGREE, BAGI, Green certificate-modified Eco-scale, and ChlorTox Scale. Additionally, the EVG method evaluation tool was also used to assess environmental impact, with the results shown in a radar chart.</p><h3>Conclusion</h3><p>This study presents a sensitive and robust RP-UPLC method for quantifying Ensifentrine, combining AQbD and GAC principles. The method, validated according to ICH guidelines, also ensures environmental sustainability. This approach sets a precedent for future analytical method development in pharmaceutical sciences with a focus on sustainability.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01448-8","citationCount":"0","resultStr":"{\"title\":\"Integrating green analytical chemistry and analytical quality by design: an innovative approach for RP-UPLC method development of ensifentrine in bulk and inhalation formulations\",\"authors\":\"Mohan Goud Vanga,&nbsp;Sarad Pawar Naik Bukke,&nbsp;Praveen Kumar Kusuma,&nbsp;Bayapa Reddy Narapureddy,&nbsp;Chandrashekar Thalluri\",\"doi\":\"10.1186/s13065-025-01448-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Chronic obstructive pulmonary disease (COPD) is a significant global health issue, worsened by pollution and modernisation. Ensifentrine (EFT), a new dual inhibitor of phosphodiesterase PDE3 and PDE4, is being developed for inhalation to target airway inflammation, bronchodilation, and ciliary function in COPD treatment.</p><h3>Objective</h3><p>This study aims to develop and validate a new quantification method for Ensifentrine, as no previous techniques are available, by integrating analytical quality-by-design (AQbD) and green analytical chemistry (GAC) principles.</p><h3>Methods</h3><p>An AQbD framework, utilizing Design-expert<sup>®</sup> software and a central composite design, optimized the RP-UPLC method. The optimized conditions involved isocratic separation on an ACQUITY UPLC HSS C18 SB column at ambient temperature, with a mobile phase of 0.01 N KH<sub>2</sub>PO<sub>4</sub> (pH 5.4) and acetonitrile (66.4:33.6 v/v), a flow rate of 0.27 mL/min, and PDA detection at 272.0 nm.</p><h3>Results</h3><p>The statistical analysis confirmed the model’s significance and normal distribution. The method, validated according to ICH guidelines, showed good linearity (r<sup>2</sup> = 0.9997) over a range of 3.75–22.5 μg/mL, with an LOD of 3.3 μg/mL and LOQ of 10 μg/mL. It was successfully applied to bulk materials and pharmaceutical formulations with statistical comparisons.</p><h3>Green chemistry assessment</h3><p>The greenness of the developed method was evaluated using tools such as ComplexMoGAPI, AGREE, BAGI, Green certificate-modified Eco-scale, and ChlorTox Scale. Additionally, the EVG method evaluation tool was also used to assess environmental impact, with the results shown in a radar chart.</p><h3>Conclusion</h3><p>This study presents a sensitive and robust RP-UPLC method for quantifying Ensifentrine, combining AQbD and GAC principles. The method, validated according to ICH guidelines, also ensures environmental sustainability. This approach sets a precedent for future analytical method development in pharmaceutical sciences with a focus on sustainability.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01448-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-025-01448-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01448-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

慢性阻塞性肺疾病(COPD)是一个重要的全球健康问题,因污染和现代化而恶化。Ensifentrine (EFT)是一种新的磷酸二酯酶PDE3和PDE4的双重抑制剂,正在开发用于吸入治疗COPD的气道炎症、支气管扩张和纤毛功能。目的结合设计质量分析(AQbD)和绿色分析化学(GAC)原理,建立并验证一种新的测定恩西芬碱的方法。方法在AQbD框架下,利用design -expert®软件和中心复合设计对RP-UPLC方法进行优化。优化条件为:在ACQUITY UPLC HSS C18 SB柱上,以0.01 N KH2PO4 (pH 5.4)和乙腈(66.4:33.6 v/v)为流动相,流速为0.27 mL/min, PDA检测波长为272.0 nm,在室温下等密度分离。结果统计分析证实了模型的显著性和正态分布。该方法在3.75 ~ 22.5 μg/mL范围内线性良好(r2 = 0.9997),定量限为3.3 μg/mL,定量限为10 μg/mL。通过统计比较,成功地将其应用于原料药和制剂中。绿色化学评估使用ComplexMoGAPI、AGREE、BAGI、Green certificate-modified Eco-scale和ChlorTox Scale等工具对所开发方法的绿色度进行了评估。此外,还使用EVG方法评估工具来评估环境影响,结果显示在雷达图中。结论结合AQbD和GAC原理,建立了一种灵敏、可靠的Ensifentrine定量RP-UPLC方法。根据ICH指南验证的方法也确保了环境的可持续性。这种方法为未来制药科学分析方法的发展树立了一个先例,重点是可持续性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating green analytical chemistry and analytical quality by design: an innovative approach for RP-UPLC method development of ensifentrine in bulk and inhalation formulations

Background

Chronic obstructive pulmonary disease (COPD) is a significant global health issue, worsened by pollution and modernisation. Ensifentrine (EFT), a new dual inhibitor of phosphodiesterase PDE3 and PDE4, is being developed for inhalation to target airway inflammation, bronchodilation, and ciliary function in COPD treatment.

Objective

This study aims to develop and validate a new quantification method for Ensifentrine, as no previous techniques are available, by integrating analytical quality-by-design (AQbD) and green analytical chemistry (GAC) principles.

Methods

An AQbD framework, utilizing Design-expert® software and a central composite design, optimized the RP-UPLC method. The optimized conditions involved isocratic separation on an ACQUITY UPLC HSS C18 SB column at ambient temperature, with a mobile phase of 0.01 N KH2PO4 (pH 5.4) and acetonitrile (66.4:33.6 v/v), a flow rate of 0.27 mL/min, and PDA detection at 272.0 nm.

Results

The statistical analysis confirmed the model’s significance and normal distribution. The method, validated according to ICH guidelines, showed good linearity (r2 = 0.9997) over a range of 3.75–22.5 μg/mL, with an LOD of 3.3 μg/mL and LOQ of 10 μg/mL. It was successfully applied to bulk materials and pharmaceutical formulations with statistical comparisons.

Green chemistry assessment

The greenness of the developed method was evaluated using tools such as ComplexMoGAPI, AGREE, BAGI, Green certificate-modified Eco-scale, and ChlorTox Scale. Additionally, the EVG method evaluation tool was also used to assess environmental impact, with the results shown in a radar chart.

Conclusion

This study presents a sensitive and robust RP-UPLC method for quantifying Ensifentrine, combining AQbD and GAC principles. The method, validated according to ICH guidelines, also ensures environmental sustainability. This approach sets a precedent for future analytical method development in pharmaceutical sciences with a focus on sustainability.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信