{"title":"OSFusion: A One-Stream Infrared and Visible Image Fusion Framework","authors":"Shengjia An;Zhi Li;Shaorong Zhang;Yongjun Wang;Bineng Zhong","doi":"10.1109/LSP.2025.3545293","DOIUrl":null,"url":null,"abstract":"The current popular two-stream two-stage image fusion framework extracts features of infrared and visible images separately and then performs feature fusion. The extracted features lack interaction between the source images and have limited cross-modal complementary capability. To address these issues, we propose a novel one-stream infrared and visible image fusion (OSFusion) framework that connects a source image pair to achieve bidirectional information flow. In this way, the fused features with cross-modal complementary information can be dynamically extracted by mutual guidance. To further improve the inference efficiency and obtain high-quality fused images, a feature extraction and fusion module (FEFM) is proposed based on Transformer structure. The combination of feature extraction and feature fusion is realized by using it. Since there is no need for an extra feature interaction module and the implementation is highly parallel, the speed of image fusion is extremely fast. Benefiting from the one-stream structure and FEFM, OSFusion achieves promising infrared and visible image fusion performance on MSRS, M3FD, and RoadScene datasets. Besides, our method achieves a good balance in the trade-off between performance and complexity, and also shows a faster convergence trend.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1086-1090"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10902023/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
OSFusion: A One-Stream Infrared and Visible Image Fusion Framework
The current popular two-stream two-stage image fusion framework extracts features of infrared and visible images separately and then performs feature fusion. The extracted features lack interaction between the source images and have limited cross-modal complementary capability. To address these issues, we propose a novel one-stream infrared and visible image fusion (OSFusion) framework that connects a source image pair to achieve bidirectional information flow. In this way, the fused features with cross-modal complementary information can be dynamically extracted by mutual guidance. To further improve the inference efficiency and obtain high-quality fused images, a feature extraction and fusion module (FEFM) is proposed based on Transformer structure. The combination of feature extraction and feature fusion is realized by using it. Since there is no need for an extra feature interaction module and the implementation is highly parallel, the speed of image fusion is extremely fast. Benefiting from the one-stream structure and FEFM, OSFusion achieves promising infrared and visible image fusion performance on MSRS, M3FD, and RoadScene datasets. Besides, our method achieves a good balance in the trade-off between performance and complexity, and also shows a faster convergence trend.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.