引脚鳍阵列中直流和交流电晕放电强化传热的对比分析

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Davoud Abdi Lanbaran , Pouria Farokhi Kojour , Chao Wang , Chuang Wen , Zhen Wu , Bo Li
{"title":"引脚鳍阵列中直流和交流电晕放电强化传热的对比分析","authors":"Davoud Abdi Lanbaran ,&nbsp;Pouria Farokhi Kojour ,&nbsp;Chao Wang ,&nbsp;Chuang Wen ,&nbsp;Zhen Wu ,&nbsp;Bo Li","doi":"10.1016/j.ijthermalsci.2025.109864","DOIUrl":null,"url":null,"abstract":"<div><div>Corona discharge-produced ionic wind has emerged as a promising area of research for enhancing heat transfer. In contrast to conventional cooling methods, which often require complex geometrical designs and inefficient energy consumption, corona wind induction offers a cost-effective solution with lower energy requirements. This study focuses on investigating the effectiveness of direct and alternating corona discharge in enhancing heat transfer from pin fin arrays of heat sources. Using numerical simulations performed with COMSOL Multiphysics (6.0) and the finite element method (FEM), both DC and AC-sourced corona ionic winds were evaluated at electric field strengths ranging from <span><math><mrow><mi>V</mi><mo>=</mo><mn>15</mn><mspace></mspace><mi>k</mi><mi>V</mi></mrow></math></span> to <span><math><mrow><mi>V</mi><mo>=</mo><mn>25</mn><mspace></mspace><mi>k</mi><mi>V</mi></mrow></math></span>. Key parameters examined included the distance arrangement of high voltage electrodes to the pin surface (<span><math><mrow><mi>A</mi></mrow></math></span>), pin fin diameter (<span><math><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></math></span>), induced voltage (<span><math><mrow><mi>V</mi></mrow></math></span>), depth of corona wind penetration, and the differences between DC and AC corona. The findings revealed a direct relationship between the amount of induced voltage and the diffusion of corona discharge, resulting in significant heat transfer enhancement of up to 66.83 % in turbulent flow at <span><math><mrow><mi>V</mi><mo>=</mo><mn>25</mn><mspace></mspace><mi>k</mi><mi>V</mi></mrow></math></span>. Furthermore, direct corona induction exhibited a greater capability to enhance the heat transfer rate in comparison to AC induction. This discrepancy was notably more pronounced under turbulent conditions, registering at <span><math><mrow><mn>10.02</mn><mo>%</mo></mrow></math></span>, whereas in the laminar flow regime, the difference amounted to <span><math><mrow><mn>4.73</mn><mo>%</mo></mrow></math></span>. In addition, the results show that the implementation of corona wind leads to a significant increase in the Nusselt number, especially within the turbulent flow range, with the use of direct corona wind at a <span><math><mrow><mn>25</mn><mspace></mspace><mi>k</mi><mi>V</mi></mrow></math></span> voltage elevating the local Nusselt number value from <span><math><mrow><mn>29.37</mn></mrow></math></span> to <span><math><mrow><mn>52.18</mn></mrow></math></span>. The results highlight the effectiveness and advantages of corona wind induction as an energy-efficient solution for tackling heat dissipation challenges in complex geometries.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":"Article 109864"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of heat transfer enhancement using direct current and alternating current corona discharge in pin fin arrays\",\"authors\":\"Davoud Abdi Lanbaran ,&nbsp;Pouria Farokhi Kojour ,&nbsp;Chao Wang ,&nbsp;Chuang Wen ,&nbsp;Zhen Wu ,&nbsp;Bo Li\",\"doi\":\"10.1016/j.ijthermalsci.2025.109864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Corona discharge-produced ionic wind has emerged as a promising area of research for enhancing heat transfer. In contrast to conventional cooling methods, which often require complex geometrical designs and inefficient energy consumption, corona wind induction offers a cost-effective solution with lower energy requirements. This study focuses on investigating the effectiveness of direct and alternating corona discharge in enhancing heat transfer from pin fin arrays of heat sources. Using numerical simulations performed with COMSOL Multiphysics (6.0) and the finite element method (FEM), both DC and AC-sourced corona ionic winds were evaluated at electric field strengths ranging from <span><math><mrow><mi>V</mi><mo>=</mo><mn>15</mn><mspace></mspace><mi>k</mi><mi>V</mi></mrow></math></span> to <span><math><mrow><mi>V</mi><mo>=</mo><mn>25</mn><mspace></mspace><mi>k</mi><mi>V</mi></mrow></math></span>. Key parameters examined included the distance arrangement of high voltage electrodes to the pin surface (<span><math><mrow><mi>A</mi></mrow></math></span>), pin fin diameter (<span><math><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></math></span>), induced voltage (<span><math><mrow><mi>V</mi></mrow></math></span>), depth of corona wind penetration, and the differences between DC and AC corona. The findings revealed a direct relationship between the amount of induced voltage and the diffusion of corona discharge, resulting in significant heat transfer enhancement of up to 66.83 % in turbulent flow at <span><math><mrow><mi>V</mi><mo>=</mo><mn>25</mn><mspace></mspace><mi>k</mi><mi>V</mi></mrow></math></span>. Furthermore, direct corona induction exhibited a greater capability to enhance the heat transfer rate in comparison to AC induction. This discrepancy was notably more pronounced under turbulent conditions, registering at <span><math><mrow><mn>10.02</mn><mo>%</mo></mrow></math></span>, whereas in the laminar flow regime, the difference amounted to <span><math><mrow><mn>4.73</mn><mo>%</mo></mrow></math></span>. In addition, the results show that the implementation of corona wind leads to a significant increase in the Nusselt number, especially within the turbulent flow range, with the use of direct corona wind at a <span><math><mrow><mn>25</mn><mspace></mspace><mi>k</mi><mi>V</mi></mrow></math></span> voltage elevating the local Nusselt number value from <span><math><mrow><mn>29.37</mn></mrow></math></span> to <span><math><mrow><mn>52.18</mn></mrow></math></span>. The results highlight the effectiveness and advantages of corona wind induction as an energy-efficient solution for tackling heat dissipation challenges in complex geometries.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"214 \",\"pages\":\"Article 109864\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925001875\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925001875","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

电晕放电产生的离子风已成为加强热传递的一个前景广阔的研究领域。传统的冷却方法往往需要复杂的几何设计和低效的能源消耗,相比之下,电晕风感应提供了一种低能耗、高性价比的解决方案。本研究的重点是调查直接和交变电晕放电在增强针形鳍片热源阵列传热方面的有效性。使用 COMSOL Multiphysics (6.0) 和有限元法 (FEM) 进行了数值模拟,在 V=15kV 至 V=25kV 的电场强度下对直流和交流电晕离子风进行了评估。研究的主要参数包括高压电极与针表面的距离排列(A)、针鳍直径(Df)、感应电压(V)、电晕风穿透深度以及直流和交流电晕之间的差异。研究结果表明,感应电压的大小与电晕放电的扩散有直接关系,因此在 V=25kV 的湍流中,热传递显著增强,最高可达 66.83%。此外,与交流感应相比,直接电晕感应更能提高传热率。在紊流条件下,这种差异更为明显,达到 10.02%,而在层流条件下,差异为 4.73%。此外,研究结果表明,电晕风的应用导致努塞尔特数显著增加,特别是在紊流范围内,在 25kV 电压下使用直接电晕风可将局部努塞尔特数值从 29.37 提高到 52.18。结果凸显了电晕风感应作为解决复杂几何形状散热难题的节能解决方案的有效性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of heat transfer enhancement using direct current and alternating current corona discharge in pin fin arrays
Corona discharge-produced ionic wind has emerged as a promising area of research for enhancing heat transfer. In contrast to conventional cooling methods, which often require complex geometrical designs and inefficient energy consumption, corona wind induction offers a cost-effective solution with lower energy requirements. This study focuses on investigating the effectiveness of direct and alternating corona discharge in enhancing heat transfer from pin fin arrays of heat sources. Using numerical simulations performed with COMSOL Multiphysics (6.0) and the finite element method (FEM), both DC and AC-sourced corona ionic winds were evaluated at electric field strengths ranging from V=15kV to V=25kV. Key parameters examined included the distance arrangement of high voltage electrodes to the pin surface (A), pin fin diameter (Df), induced voltage (V), depth of corona wind penetration, and the differences between DC and AC corona. The findings revealed a direct relationship between the amount of induced voltage and the diffusion of corona discharge, resulting in significant heat transfer enhancement of up to 66.83 % in turbulent flow at V=25kV. Furthermore, direct corona induction exhibited a greater capability to enhance the heat transfer rate in comparison to AC induction. This discrepancy was notably more pronounced under turbulent conditions, registering at 10.02%, whereas in the laminar flow regime, the difference amounted to 4.73%. In addition, the results show that the implementation of corona wind leads to a significant increase in the Nusselt number, especially within the turbulent flow range, with the use of direct corona wind at a 25kV voltage elevating the local Nusselt number value from 29.37 to 52.18. The results highlight the effectiveness and advantages of corona wind induction as an energy-efficient solution for tackling heat dissipation challenges in complex geometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信