Zhijie Li , Qiang Meng , Ling Li , Zhentao Bai , Yanjie Li , Hongguang Liu , Pengfei Li , Tangang Wang
{"title":"干旱地区土壤盐渍化可持续治理与棉花生产的深层垂直旋耕与地下管道排水综合技术","authors":"Zhijie Li , Qiang Meng , Ling Li , Zhentao Bai , Yanjie Li , Hongguang Liu , Pengfei Li , Tangang Wang","doi":"10.1016/j.agwat.2025.109429","DOIUrl":null,"url":null,"abstract":"<div><div>Soil salinization impacts over 6 % of the world’s arable land, presenting an even greater challenge to agriculture in arid regions. This study assessed various subsurface pipe arrangements (B1: 1.0 m depth, 20 m spacing; B2: 0.8 m depth, 16 m spacing), deep vertical rotary tillage (DVRT) depths (DT40: 40 cm, DT60: 60 cm), and conventional tillage (CT) over the period from 2021 to 2023 to evaluate their long-term effects on soil properties, drainage characteristics, and crop production. The results indicated that the combination of DVRT and SPD significantly reduced the levels of salt and ions (Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Cl<sup>−</sup>, and SO<sub>4</sub><sup>2−</sup>). Increasing tillage depth and reducing pipe spacing and depth significantly improved soil desalination and drainage but reduced soil water storage. Meanwhile, the total nitrogen (TN), phosphorus (TP), and potassium (TK) contents in the 0–20 cm soil layer were significantly reduced by 3–8 %, 3–6 %, and 9–19 %, respectively, compared to the CT treatment. Specifically, the DT60-B1 treatment exhibited the greatest soil desalination and drainage but also had the highest concentrations of TN, TP, and TK in the drainage. Although these changes initially caused a 5 % and 8 % decrease in average dry mass and yield, respectively, cotton’s uptake of Na<sup>+</sup> and Cl<sup>−</sup> decreased over time, while the uptake of Ca<sup>2+</sup>, as well as the accumulation of C, N, P, and K, along with yield, gradually increased. Random forest analysis showed that soil salinity and water storage significantly impacted yield, with electrical conductivity identified as the primary limiting factor. In 2023, the DT60–B1 treatment yielded significantly more than the CT treatment, and its comprehensive evaluation index increased from 0.44 to 0.67, indicating a shift from inhibition to promotion of crop growth over time. Long-term application requires optimizing pipeline layout and farming practices to improve productivity and sustain saline soil use.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"312 ","pages":"Article 109429"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated deep vertical rotary tillage and subsurface pipe drainage techniques for sustainable soil salinization management and cotton production in arid regions\",\"authors\":\"Zhijie Li , Qiang Meng , Ling Li , Zhentao Bai , Yanjie Li , Hongguang Liu , Pengfei Li , Tangang Wang\",\"doi\":\"10.1016/j.agwat.2025.109429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil salinization impacts over 6 % of the world’s arable land, presenting an even greater challenge to agriculture in arid regions. This study assessed various subsurface pipe arrangements (B1: 1.0 m depth, 20 m spacing; B2: 0.8 m depth, 16 m spacing), deep vertical rotary tillage (DVRT) depths (DT40: 40 cm, DT60: 60 cm), and conventional tillage (CT) over the period from 2021 to 2023 to evaluate their long-term effects on soil properties, drainage characteristics, and crop production. The results indicated that the combination of DVRT and SPD significantly reduced the levels of salt and ions (Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Cl<sup>−</sup>, and SO<sub>4</sub><sup>2−</sup>). Increasing tillage depth and reducing pipe spacing and depth significantly improved soil desalination and drainage but reduced soil water storage. Meanwhile, the total nitrogen (TN), phosphorus (TP), and potassium (TK) contents in the 0–20 cm soil layer were significantly reduced by 3–8 %, 3–6 %, and 9–19 %, respectively, compared to the CT treatment. Specifically, the DT60-B1 treatment exhibited the greatest soil desalination and drainage but also had the highest concentrations of TN, TP, and TK in the drainage. Although these changes initially caused a 5 % and 8 % decrease in average dry mass and yield, respectively, cotton’s uptake of Na<sup>+</sup> and Cl<sup>−</sup> decreased over time, while the uptake of Ca<sup>2+</sup>, as well as the accumulation of C, N, P, and K, along with yield, gradually increased. Random forest analysis showed that soil salinity and water storage significantly impacted yield, with electrical conductivity identified as the primary limiting factor. In 2023, the DT60–B1 treatment yielded significantly more than the CT treatment, and its comprehensive evaluation index increased from 0.44 to 0.67, indicating a shift from inhibition to promotion of crop growth over time. Long-term application requires optimizing pipeline layout and farming practices to improve productivity and sustain saline soil use.</div></div>\",\"PeriodicalId\":7634,\"journal\":{\"name\":\"Agricultural Water Management\",\"volume\":\"312 \",\"pages\":\"Article 109429\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Water Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037837742500143X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837742500143X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Integrated deep vertical rotary tillage and subsurface pipe drainage techniques for sustainable soil salinization management and cotton production in arid regions
Soil salinization impacts over 6 % of the world’s arable land, presenting an even greater challenge to agriculture in arid regions. This study assessed various subsurface pipe arrangements (B1: 1.0 m depth, 20 m spacing; B2: 0.8 m depth, 16 m spacing), deep vertical rotary tillage (DVRT) depths (DT40: 40 cm, DT60: 60 cm), and conventional tillage (CT) over the period from 2021 to 2023 to evaluate their long-term effects on soil properties, drainage characteristics, and crop production. The results indicated that the combination of DVRT and SPD significantly reduced the levels of salt and ions (Na+, K+, Mg2+, Ca2+, Cl−, and SO42−). Increasing tillage depth and reducing pipe spacing and depth significantly improved soil desalination and drainage but reduced soil water storage. Meanwhile, the total nitrogen (TN), phosphorus (TP), and potassium (TK) contents in the 0–20 cm soil layer were significantly reduced by 3–8 %, 3–6 %, and 9–19 %, respectively, compared to the CT treatment. Specifically, the DT60-B1 treatment exhibited the greatest soil desalination and drainage but also had the highest concentrations of TN, TP, and TK in the drainage. Although these changes initially caused a 5 % and 8 % decrease in average dry mass and yield, respectively, cotton’s uptake of Na+ and Cl− decreased over time, while the uptake of Ca2+, as well as the accumulation of C, N, P, and K, along with yield, gradually increased. Random forest analysis showed that soil salinity and water storage significantly impacted yield, with electrical conductivity identified as the primary limiting factor. In 2023, the DT60–B1 treatment yielded significantly more than the CT treatment, and its comprehensive evaluation index increased from 0.44 to 0.67, indicating a shift from inhibition to promotion of crop growth over time. Long-term application requires optimizing pipeline layout and farming practices to improve productivity and sustain saline soil use.
期刊介绍:
Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.