{"title":"谱曼特尔定理的一个改进","authors":"Zhenzhen Lou , Lu Lu , Mingqing Zhai","doi":"10.1016/j.ejc.2025.104142","DOIUrl":null,"url":null,"abstract":"<div><div>The well-known Mantel’s theorem states that <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></mrow></math></span> for every <span><math><mi>n</mi></math></span>-vertex triangle-free graph <span><math><mi>G</mi></math></span>. In 1970, Nosal showed a spectral version of Mantel’s theorem, which states that <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><msqrt><mrow><mi>m</mi></mrow></msqrt></mrow></math></span> for every triangle-free graph <span><math><mi>G</mi></math></span> on <span><math><mi>m</mi></math></span> edges. Later, Nikiforov proved that the equality holds in Nosal’s bound if and only if <span><math><mi>G</mi></math></span> is a complete bipartite graph. Lin, Ning, and Wu [Combin. Probab. Comput. 30 (2021)] first gave a result on non-bipartite triangle-free graphs. They proved that <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><msqrt><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msqrt></mrow></math></span>, and equality holds if and only if <span><math><mi>G</mi></math></span> is a 5-cycle. Their result is actually stronger than Mantel’s theorem. Recently, Li, Feng and Peng [Electron. J. Combin. 31 (2024)] characterized the extremal non-bipartite triangle-free graphs with maximal spectral radius for even <span><math><mi>m</mi></math></span>. Furthermore, they proposed a question as follows: what is the extremal graph with maximal spectral radius over all non-bipartite <span><math><mrow><mo>{</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow></math></span>-free graphs of even size <span><math><mi>m</mi></math></span>? This question is completely solved in this paper. Here we use a different technique, and we call it residual function, which can present more concise proofs on related problems. Finally, a general question is proposed for further research.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104142"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A refinement on spectral Mantel’s theorem\",\"authors\":\"Zhenzhen Lou , Lu Lu , Mingqing Zhai\",\"doi\":\"10.1016/j.ejc.2025.104142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The well-known Mantel’s theorem states that <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></mrow></math></span> for every <span><math><mi>n</mi></math></span>-vertex triangle-free graph <span><math><mi>G</mi></math></span>. In 1970, Nosal showed a spectral version of Mantel’s theorem, which states that <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><msqrt><mrow><mi>m</mi></mrow></msqrt></mrow></math></span> for every triangle-free graph <span><math><mi>G</mi></math></span> on <span><math><mi>m</mi></math></span> edges. Later, Nikiforov proved that the equality holds in Nosal’s bound if and only if <span><math><mi>G</mi></math></span> is a complete bipartite graph. Lin, Ning, and Wu [Combin. Probab. Comput. 30 (2021)] first gave a result on non-bipartite triangle-free graphs. They proved that <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><msqrt><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msqrt></mrow></math></span>, and equality holds if and only if <span><math><mi>G</mi></math></span> is a 5-cycle. Their result is actually stronger than Mantel’s theorem. Recently, Li, Feng and Peng [Electron. J. Combin. 31 (2024)] characterized the extremal non-bipartite triangle-free graphs with maximal spectral radius for even <span><math><mi>m</mi></math></span>. Furthermore, they proposed a question as follows: what is the extremal graph with maximal spectral radius over all non-bipartite <span><math><mrow><mo>{</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow></math></span>-free graphs of even size <span><math><mi>m</mi></math></span>? This question is completely solved in this paper. Here we use a different technique, and we call it residual function, which can present more concise proofs on related problems. Finally, a general question is proposed for further research.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"127 \",\"pages\":\"Article 104142\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000241\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000241","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
众所周知的曼特尔定理表明,对于每一个n顶点的无三角形图G, e(G)≤⌊n2/4⌋。1970年,Nosal展示了曼特尔定理的谱版,表明ρ(G)≤m,对于每一个有m条边的无三角形图G。后来,Nikiforov证明了当且仅当G是完全二部图时,这个等式在Nosal界中成立。林,宁,吴[组合]。Probab。[computer . 30(2021)]第一次给出了非二部无三角形图的结果。他们证明了ρ(G)≤m−1,当且仅当G是5环时等式成立。他们的结果实际上比曼特尔定理更有力。最近,李,冯和彭[电子]。J. Combin. 31(2024)]刻画了偶数m的具有最大谱半径的非二部无三角形极值图。进而,他们提出了一个问题:在所有大小为偶数m的非二部{C3,C5,…,C2 r +1}的无三角形图上具有最大谱半径的极值图是什么?本文彻底解决了这个问题。这里我们使用另一种技术,我们称之为残差函数,它可以对相关问题给出更简洁的证明。最后,提出了一个一般性问题,供进一步研究。
The well-known Mantel’s theorem states that for every -vertex triangle-free graph . In 1970, Nosal showed a spectral version of Mantel’s theorem, which states that for every triangle-free graph on edges. Later, Nikiforov proved that the equality holds in Nosal’s bound if and only if is a complete bipartite graph. Lin, Ning, and Wu [Combin. Probab. Comput. 30 (2021)] first gave a result on non-bipartite triangle-free graphs. They proved that , and equality holds if and only if is a 5-cycle. Their result is actually stronger than Mantel’s theorem. Recently, Li, Feng and Peng [Electron. J. Combin. 31 (2024)] characterized the extremal non-bipartite triangle-free graphs with maximal spectral radius for even . Furthermore, they proposed a question as follows: what is the extremal graph with maximal spectral radius over all non-bipartite -free graphs of even size ? This question is completely solved in this paper. Here we use a different technique, and we call it residual function, which can present more concise proofs on related problems. Finally, a general question is proposed for further research.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.