长期洪水改变森林湿地功能

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
William Tomlinson, Jaybus Price, Jacob F. Berkowitz
{"title":"长期洪水改变森林湿地功能","authors":"William Tomlinson,&nbsp;Jaybus Price,&nbsp;Jacob F. Berkowitz","doi":"10.1016/j.ecolind.2025.113338","DOIUrl":null,"url":null,"abstract":"<div><div>Standing dead trees, or snags, and other vegetative structures contribute to the delivery of forested wetland ecosystem functions (i.e., things that wetland do). This study evaluated &gt; 150-day flood induced changes in vegetation community structure and wetland functional capacity shifts in a &gt; 30 year-old restored Mississippi Alluvial Valley wetland. Flooding significantly altered Hydrogeomorphic (HGM) wetland functional assessment variables (e.g., snag and tree density; ground vegetation cover; woody debris and log biomass), shifting forested wetland functional capacity indexes (FCIs). For example, few snags were present prior to the floods, and flooding increased mean snag density from 2.0 snags/ha to 105 snags/ha. Only 8 % of study locations exhibited snag densities observed in fully functional forests before the floods, which increased to 42 % post-flood. The remaining 58 % locations surpassed fully functional wetlands snag densities, and now contain excessive snags. Overall, changes in vegetation structures within the restored wetland augmented the delivery of ecological functions. The wetland FCIs for Nutrient Cycling, Carbon Export, Maintain Plant Communities, and Fish and Wildlife Habitat cumulatively increased by a mean value of 0.44 (range = −0.30–1.30; median = 0.44), representing a mean increase of 19 %. Results would differ in mature forests with natural snag distributions, where extensive flood-induced snags would likely decrease functional capacity. The restored wetlands functional trajectory will continue evolving in response to changes in log and woody debris distribution as snags decay, and forest succession occurs. Future floods extending into the growing season, when tree mortality risk increases, will further influence the delivery of wetland functions.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"173 ","pages":"Article 113338"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prolonged flooding alters forested wetland function\",\"authors\":\"William Tomlinson,&nbsp;Jaybus Price,&nbsp;Jacob F. Berkowitz\",\"doi\":\"10.1016/j.ecolind.2025.113338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Standing dead trees, or snags, and other vegetative structures contribute to the delivery of forested wetland ecosystem functions (i.e., things that wetland do). This study evaluated &gt; 150-day flood induced changes in vegetation community structure and wetland functional capacity shifts in a &gt; 30 year-old restored Mississippi Alluvial Valley wetland. Flooding significantly altered Hydrogeomorphic (HGM) wetland functional assessment variables (e.g., snag and tree density; ground vegetation cover; woody debris and log biomass), shifting forested wetland functional capacity indexes (FCIs). For example, few snags were present prior to the floods, and flooding increased mean snag density from 2.0 snags/ha to 105 snags/ha. Only 8 % of study locations exhibited snag densities observed in fully functional forests before the floods, which increased to 42 % post-flood. The remaining 58 % locations surpassed fully functional wetlands snag densities, and now contain excessive snags. Overall, changes in vegetation structures within the restored wetland augmented the delivery of ecological functions. The wetland FCIs for Nutrient Cycling, Carbon Export, Maintain Plant Communities, and Fish and Wildlife Habitat cumulatively increased by a mean value of 0.44 (range = −0.30–1.30; median = 0.44), representing a mean increase of 19 %. Results would differ in mature forests with natural snag distributions, where extensive flood-induced snags would likely decrease functional capacity. The restored wetlands functional trajectory will continue evolving in response to changes in log and woody debris distribution as snags decay, and forest succession occurs. Future floods extending into the growing season, when tree mortality risk increases, will further influence the delivery of wetland functions.</div></div>\",\"PeriodicalId\":11459,\"journal\":{\"name\":\"Ecological Indicators\",\"volume\":\"173 \",\"pages\":\"Article 113338\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Indicators\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1470160X25002699\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X25002699","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prolonged flooding alters forested wetland function
Standing dead trees, or snags, and other vegetative structures contribute to the delivery of forested wetland ecosystem functions (i.e., things that wetland do). This study evaluated > 150-day flood induced changes in vegetation community structure and wetland functional capacity shifts in a > 30 year-old restored Mississippi Alluvial Valley wetland. Flooding significantly altered Hydrogeomorphic (HGM) wetland functional assessment variables (e.g., snag and tree density; ground vegetation cover; woody debris and log biomass), shifting forested wetland functional capacity indexes (FCIs). For example, few snags were present prior to the floods, and flooding increased mean snag density from 2.0 snags/ha to 105 snags/ha. Only 8 % of study locations exhibited snag densities observed in fully functional forests before the floods, which increased to 42 % post-flood. The remaining 58 % locations surpassed fully functional wetlands snag densities, and now contain excessive snags. Overall, changes in vegetation structures within the restored wetland augmented the delivery of ecological functions. The wetland FCIs for Nutrient Cycling, Carbon Export, Maintain Plant Communities, and Fish and Wildlife Habitat cumulatively increased by a mean value of 0.44 (range = −0.30–1.30; median = 0.44), representing a mean increase of 19 %. Results would differ in mature forests with natural snag distributions, where extensive flood-induced snags would likely decrease functional capacity. The restored wetlands functional trajectory will continue evolving in response to changes in log and woody debris distribution as snags decay, and forest succession occurs. Future floods extending into the growing season, when tree mortality risk increases, will further influence the delivery of wetland functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信