低tpaoh -silica比干凝胶水热体系中小晶ZSM-5沸石的高效合成

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Jiahui Hu, Hao Jiang, Yitong Guo, Jing Liu, Dan Xu, Guoxing Wu, Yanhui Yi, Zhongkui Zhao, Hongchen Guo
{"title":"低tpaoh -silica比干凝胶水热体系中小晶ZSM-5沸石的高效合成","authors":"Jiahui Hu,&nbsp;Hao Jiang,&nbsp;Yitong Guo,&nbsp;Jing Liu,&nbsp;Dan Xu,&nbsp;Guoxing Wu,&nbsp;Yanhui Yi,&nbsp;Zhongkui Zhao,&nbsp;Hongchen Guo","doi":"10.1016/j.micromeso.2025.113596","DOIUrl":null,"url":null,"abstract":"<div><div>The present study is related to the synthesis of nano-sized ZSM-5 zeolite with a dry-gel hydrothermal (DHT) method which is different from the known dry-gel conversion (DGC) method, for it allows the crystallization of the dry-gel in water or n-butylamine solution and the use of common autoclaves. The effects of TPAOH/SiO<sub>2</sub> ratio on the crystal size of ZSM-5 zeolite product, and the viability of synthesizing nano-sized ZSM-5 zeolite using the new method from a TPAOH-poor dry-gel with the aid of co-template n-butylamine are emphasized. Results show that, under the same TPAOH/SiO<sub>2</sub> ratio conditions, DHT synthesis is more beneficial for obtaining smaller crystal size ZSM-5 zeolite than the conventional hydrothermal (CHT) synthesis. The DHT synthesis can be implemented with a TPAOH-rich dry-gel (for example, TPAOH/SiO<sub>2</sub>≥0.15) by using simply water as crystallizing solution, to yield discrete nano-sized ZSM-5 zeolite (crystal size 70 nm), or with a TPAOH-poor dry-gel (for example, TPAOH/SiO<sub>2</sub> = 0.075) by using a concentrated NBA aqueous solution (for example, a solution contains 75 % NBA) as crystallizing solution, to yield aggregates of nano-sized ZSM-5 zeolite (primary particle size 200 nm). The nano-sized ZSM-5 zeolites synthesized by the DHT method are inclined to have larger mesoporous and macroporous volume. After being doped with zinc ions, they become promising catalysts for the aromatization of n-hexane (n-h).</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"390 ","pages":"Article 113596"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient synthesis of smaller crystal ZSM-5 zeolite in low TPAOH-to-silica ratio dry-gel hydrothermal system\",\"authors\":\"Jiahui Hu,&nbsp;Hao Jiang,&nbsp;Yitong Guo,&nbsp;Jing Liu,&nbsp;Dan Xu,&nbsp;Guoxing Wu,&nbsp;Yanhui Yi,&nbsp;Zhongkui Zhao,&nbsp;Hongchen Guo\",\"doi\":\"10.1016/j.micromeso.2025.113596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study is related to the synthesis of nano-sized ZSM-5 zeolite with a dry-gel hydrothermal (DHT) method which is different from the known dry-gel conversion (DGC) method, for it allows the crystallization of the dry-gel in water or n-butylamine solution and the use of common autoclaves. The effects of TPAOH/SiO<sub>2</sub> ratio on the crystal size of ZSM-5 zeolite product, and the viability of synthesizing nano-sized ZSM-5 zeolite using the new method from a TPAOH-poor dry-gel with the aid of co-template n-butylamine are emphasized. Results show that, under the same TPAOH/SiO<sub>2</sub> ratio conditions, DHT synthesis is more beneficial for obtaining smaller crystal size ZSM-5 zeolite than the conventional hydrothermal (CHT) synthesis. The DHT synthesis can be implemented with a TPAOH-rich dry-gel (for example, TPAOH/SiO<sub>2</sub>≥0.15) by using simply water as crystallizing solution, to yield discrete nano-sized ZSM-5 zeolite (crystal size 70 nm), or with a TPAOH-poor dry-gel (for example, TPAOH/SiO<sub>2</sub> = 0.075) by using a concentrated NBA aqueous solution (for example, a solution contains 75 % NBA) as crystallizing solution, to yield aggregates of nano-sized ZSM-5 zeolite (primary particle size 200 nm). The nano-sized ZSM-5 zeolites synthesized by the DHT method are inclined to have larger mesoporous and macroporous volume. After being doped with zinc ions, they become promising catalysts for the aromatization of n-hexane (n-h).</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"390 \",\"pages\":\"Article 113596\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181125001106\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125001106","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

采用干凝胶水热法(DHT)合成纳米级ZSM-5沸石,该方法不同于已知的干凝胶转化法(DGC),它允许干凝胶在水或正丁胺溶液中结晶,并使用普通的高压灭菌器。重点研究了TPAOH/SiO2对ZSM-5分子筛产物晶粒大小的影响,以及该方法在正丁胺共模板作用下,由TPAOH-贫干凝胶合成纳米ZSM-5分子筛的可行性。结果表明,在相同的TPAOH/SiO2比条件下,DHT合成比传统的水热(CHT)合成更有利于获得更小晶粒的ZSM-5沸石。DHT的合成可以用富含TPAOH的干凝胶(如TPAOH/SiO2≥0.15),以纯水为结晶溶液,得到离散的纳米级ZSM-5沸石(晶体尺寸为70 nm),或者用缺乏TPAOH的干凝胶(如TPAOH/SiO2 = 0.075),以浓缩的NBA水溶液(如含有75% NBA的溶液)为结晶溶液,得到纳米级ZSM-5沸石聚集体(主要粒径为200 nm)。DHT法制备的纳米ZSM-5分子筛具有较大的介孔和大孔体积。锌离子掺杂后,它们成为正己烷(n-h)芳构化的有前途的催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient synthesis of smaller crystal ZSM-5 zeolite in low TPAOH-to-silica ratio dry-gel hydrothermal system

Efficient synthesis of smaller crystal ZSM-5 zeolite in low TPAOH-to-silica ratio dry-gel hydrothermal system
The present study is related to the synthesis of nano-sized ZSM-5 zeolite with a dry-gel hydrothermal (DHT) method which is different from the known dry-gel conversion (DGC) method, for it allows the crystallization of the dry-gel in water or n-butylamine solution and the use of common autoclaves. The effects of TPAOH/SiO2 ratio on the crystal size of ZSM-5 zeolite product, and the viability of synthesizing nano-sized ZSM-5 zeolite using the new method from a TPAOH-poor dry-gel with the aid of co-template n-butylamine are emphasized. Results show that, under the same TPAOH/SiO2 ratio conditions, DHT synthesis is more beneficial for obtaining smaller crystal size ZSM-5 zeolite than the conventional hydrothermal (CHT) synthesis. The DHT synthesis can be implemented with a TPAOH-rich dry-gel (for example, TPAOH/SiO2≥0.15) by using simply water as crystallizing solution, to yield discrete nano-sized ZSM-5 zeolite (crystal size 70 nm), or with a TPAOH-poor dry-gel (for example, TPAOH/SiO2 = 0.075) by using a concentrated NBA aqueous solution (for example, a solution contains 75 % NBA) as crystallizing solution, to yield aggregates of nano-sized ZSM-5 zeolite (primary particle size 200 nm). The nano-sized ZSM-5 zeolites synthesized by the DHT method are inclined to have larger mesoporous and macroporous volume. After being doped with zinc ions, they become promising catalysts for the aromatization of n-hexane (n-h).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信