海洋芽孢杆菌LBB1生产糖蛋白生物絮凝剂的工艺优化及生物絮凝效果研究

IF 3.4 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Tijo Cherian, Shibin Eranhottu, R. Mohanraju
{"title":"海洋芽孢杆菌LBB1生产糖蛋白生物絮凝剂的工艺优化及生物絮凝效果研究","authors":"Tijo Cherian,&nbsp;Shibin Eranhottu,&nbsp;R. Mohanraju","doi":"10.1016/j.bcab.2025.103555","DOIUrl":null,"url":null,"abstract":"<div><div>A type of environmentally benign and biodegradable biopolymers made by different microorganisms, bioflocculants have drawn more attention as viable substitutes for traditional chemical flocculants in the treatment of wastewater and the removal of pollutants. However, a number of obstacles prevent bioflocculants from being scaled up industrially, such as expensive substrate prices, limited manufacturing yields, and complex purifying procedures. A careful consideration must be given to the potential of microbiological contamination and the resulting health consequences linked to the use of bioflocculants. In present study, the bio-flocculative activity of <em>Bacillus oceanisediminis</em> LBB1 isolated from the gut of a finfish <em>Lutjanus biguttanus</em>, has been documented for the first time-the glycoproteinaceous bioflocculant BOB1 found to be an excellent bioflocculant with 80 % flocculating activity. The process standardization and optimization elucidated the most feasible and favourable reaction conditions ascertaining the synthesis and reaction kinetics of the bioflocculant BOB1 against kaolin clay suspension. The pattern of thermal stability of BOB1 was found to be fairly steady and stable with the maximal value reaching 94.6 % ± 1.0 % at 30 °C. The presence of various functional groups was analysed by FT-IR whereas the SEM micrographs exhibited the compact nature and fine and scattered particles of BOB-1. Hence, the creation of multipurpose flocculants based on MBF and its cooperative use with other treatment technologies are recognized as new developments for improved resource recovery and wastewater treatment.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"65 ","pages":"Article 103555"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process optimization and bioflocculative insights of glycoprotein bioflocculant produced by marine bacterium Bacillus oceanisediminis LBB1\",\"authors\":\"Tijo Cherian,&nbsp;Shibin Eranhottu,&nbsp;R. Mohanraju\",\"doi\":\"10.1016/j.bcab.2025.103555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A type of environmentally benign and biodegradable biopolymers made by different microorganisms, bioflocculants have drawn more attention as viable substitutes for traditional chemical flocculants in the treatment of wastewater and the removal of pollutants. However, a number of obstacles prevent bioflocculants from being scaled up industrially, such as expensive substrate prices, limited manufacturing yields, and complex purifying procedures. A careful consideration must be given to the potential of microbiological contamination and the resulting health consequences linked to the use of bioflocculants. In present study, the bio-flocculative activity of <em>Bacillus oceanisediminis</em> LBB1 isolated from the gut of a finfish <em>Lutjanus biguttanus</em>, has been documented for the first time-the glycoproteinaceous bioflocculant BOB1 found to be an excellent bioflocculant with 80 % flocculating activity. The process standardization and optimization elucidated the most feasible and favourable reaction conditions ascertaining the synthesis and reaction kinetics of the bioflocculant BOB1 against kaolin clay suspension. The pattern of thermal stability of BOB1 was found to be fairly steady and stable with the maximal value reaching 94.6 % ± 1.0 % at 30 °C. The presence of various functional groups was analysed by FT-IR whereas the SEM micrographs exhibited the compact nature and fine and scattered particles of BOB-1. Hence, the creation of multipurpose flocculants based on MBF and its cooperative use with other treatment technologies are recognized as new developments for improved resource recovery and wastewater treatment.</div></div>\",\"PeriodicalId\":8774,\"journal\":{\"name\":\"Biocatalysis and agricultural biotechnology\",\"volume\":\"65 \",\"pages\":\"Article 103555\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis and agricultural biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878818125000684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125000684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物絮凝剂是一种由不同微生物制成的环境友好、可生物降解的生物聚合物,作为传统化学絮凝剂在废水处理和污染物去除方面的可行替代品而受到越来越多的关注。然而,许多障碍阻碍了生物絮凝剂在工业上的规模化,如昂贵的基材价格、有限的生产产量和复杂的净化程序。必须仔细考虑微生物污染的可能性以及与使用生物絮凝剂有关的由此产生的健康后果。本研究首次报道了从大尾鱼(Lutjanus biguttanus)肠道中分离的海洋芽孢杆菌(Bacillus oceanisediminis) LBB1的生物絮凝活性,发现糖蛋白生物絮凝剂BOB1是一种絮凝活性高达80%的优良生物絮凝剂。通过工艺标准化和优化,确定了BOB1生物絮凝剂对高岭土悬浮液的合成和反应动力学的最可行和最有利的反应条件。结果表明,BOB1的热稳定性规律较为稳定,在30℃时,其热稳定性最大值可达94.6%±1.0%。FT-IR分析了各种官能团的存在,SEM显微图显示了BOB-1的致密性和细分散的颗粒。因此,基于MBF的多用途絮凝剂的创建及其与其他处理技术的合作使用被认为是改善资源回收和废水处理的新发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Process optimization and bioflocculative insights of glycoprotein bioflocculant produced by marine bacterium Bacillus oceanisediminis LBB1
A type of environmentally benign and biodegradable biopolymers made by different microorganisms, bioflocculants have drawn more attention as viable substitutes for traditional chemical flocculants in the treatment of wastewater and the removal of pollutants. However, a number of obstacles prevent bioflocculants from being scaled up industrially, such as expensive substrate prices, limited manufacturing yields, and complex purifying procedures. A careful consideration must be given to the potential of microbiological contamination and the resulting health consequences linked to the use of bioflocculants. In present study, the bio-flocculative activity of Bacillus oceanisediminis LBB1 isolated from the gut of a finfish Lutjanus biguttanus, has been documented for the first time-the glycoproteinaceous bioflocculant BOB1 found to be an excellent bioflocculant with 80 % flocculating activity. The process standardization and optimization elucidated the most feasible and favourable reaction conditions ascertaining the synthesis and reaction kinetics of the bioflocculant BOB1 against kaolin clay suspension. The pattern of thermal stability of BOB1 was found to be fairly steady and stable with the maximal value reaching 94.6 % ± 1.0 % at 30 °C. The presence of various functional groups was analysed by FT-IR whereas the SEM micrographs exhibited the compact nature and fine and scattered particles of BOB-1. Hence, the creation of multipurpose flocculants based on MBF and its cooperative use with other treatment technologies are recognized as new developments for improved resource recovery and wastewater treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信