层状岩石实验模型中开裂模式裂缝的空间排列和聚集

IF 2.6 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Myroslava Kravchuk , Alexandre I. Chemenda , Julien Ambre
{"title":"层状岩石实验模型中开裂模式裂缝的空间排列和聚集","authors":"Myroslava Kravchuk ,&nbsp;Alexandre I. Chemenda ,&nbsp;Julien Ambre","doi":"10.1016/j.jsg.2025.105392","DOIUrl":null,"url":null,"abstract":"<div><div>Arrays of opening-mode fractures were obtained in three-layer experimental models. They consist of a stiff, brittle competent Granular Rock Analog Material (GRAM) layer sandwiched between two more compliant incompetent elastomer layers. All layers are homogeneous with uniform properties and initially under hydrostatic stresses. Fracturing occurs during horizontal unloading (extension) under constant vertical compressive stress <span><math><mrow><msub><mi>σ</mi><mi>v</mi></msub></mrow></math></span>. The process begins with fractures having spacing (<span><math><mrow><mi>S</mi></mrow></math></span>) to layer thickness (<span><math><mrow><mi>T</mi></mrow></math></span>) ratio of <span><math><mrow><mi>Ω</mi><mo>=</mo><mi>S</mi><mo>/</mo><mi>T</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. At nominal extension strain <span><math><mrow><msub><mi>ε</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>&gt;</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>, new fractures form closely to some of the initial ones. They initiate at the layer top and bottom and propagate both vertically and laterally, forming a linear fracture cluster (or corridor) in plan view. The <span><math><mrow><mi>Ω</mi></mrow></math></span> value within the cluster is 0.01–0.05, consistent with the natural prototypes. Then, other initial or newly formed fractures become centers of cluster growth until the entire layer is filled with clusters at <span><math><mrow><msub><mi>ε</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>&gt;</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>, marking the transition from strongly clustered to a more uniform distribution of now closely spaced fractures. All these spatial fracture arrangements also exist in nature, and according to our results depend on <span><math><mrow><msub><mi>ε</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub></mrow></math></span>, controlled by the process driving the fracturing of competent layers. This process involves the lateral spreading of the incompetent materials under the vertical (lithostatic) compression <span><math><mrow><msub><mi>σ</mi><mi>v</mi></msub></mrow></math></span>, and depends on the <span><math><mrow><msub><mi>σ</mi><mi>v</mi></msub></mrow></math></span> value and the contrast in the elastic moduli between competent and incompetent layers. These findings provide new insights into fracture clustering phenomenon and can serve as a basis for improving its numerical modeling that should be able to reproduce the obtained results.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"196 ","pages":"Article 105392"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial arrangements and clustering of opening-mode fractures in experimental models of layered rocks\",\"authors\":\"Myroslava Kravchuk ,&nbsp;Alexandre I. Chemenda ,&nbsp;Julien Ambre\",\"doi\":\"10.1016/j.jsg.2025.105392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arrays of opening-mode fractures were obtained in three-layer experimental models. They consist of a stiff, brittle competent Granular Rock Analog Material (GRAM) layer sandwiched between two more compliant incompetent elastomer layers. All layers are homogeneous with uniform properties and initially under hydrostatic stresses. Fracturing occurs during horizontal unloading (extension) under constant vertical compressive stress <span><math><mrow><msub><mi>σ</mi><mi>v</mi></msub></mrow></math></span>. The process begins with fractures having spacing (<span><math><mrow><mi>S</mi></mrow></math></span>) to layer thickness (<span><math><mrow><mi>T</mi></mrow></math></span>) ratio of <span><math><mrow><mi>Ω</mi><mo>=</mo><mi>S</mi><mo>/</mo><mi>T</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. At nominal extension strain <span><math><mrow><msub><mi>ε</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>&gt;</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>, new fractures form closely to some of the initial ones. They initiate at the layer top and bottom and propagate both vertically and laterally, forming a linear fracture cluster (or corridor) in plan view. The <span><math><mrow><mi>Ω</mi></mrow></math></span> value within the cluster is 0.01–0.05, consistent with the natural prototypes. Then, other initial or newly formed fractures become centers of cluster growth until the entire layer is filled with clusters at <span><math><mrow><msub><mi>ε</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>&gt;</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>, marking the transition from strongly clustered to a more uniform distribution of now closely spaced fractures. All these spatial fracture arrangements also exist in nature, and according to our results depend on <span><math><mrow><msub><mi>ε</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub></mrow></math></span>, controlled by the process driving the fracturing of competent layers. This process involves the lateral spreading of the incompetent materials under the vertical (lithostatic) compression <span><math><mrow><msub><mi>σ</mi><mi>v</mi></msub></mrow></math></span>, and depends on the <span><math><mrow><msub><mi>σ</mi><mi>v</mi></msub></mrow></math></span> value and the contrast in the elastic moduli between competent and incompetent layers. These findings provide new insights into fracture clustering phenomenon and can serve as a basis for improving its numerical modeling that should be able to reproduce the obtained results.</div></div>\",\"PeriodicalId\":50035,\"journal\":{\"name\":\"Journal of Structural Geology\",\"volume\":\"196 \",\"pages\":\"Article 105392\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191814125000562\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814125000562","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在三层实验模型中,得到了开口型裂缝阵列。它们由坚硬、脆性的粒状岩石模拟材料(GRAM)层夹在两个更柔顺的非弹性弹性体层之间组成。所有的层都是均匀的,具有均匀的性质,最初在静水应力下。在恒定的竖向压应力σv条件下,水平卸荷(拉伸)过程中发生破裂。该过程始于裂缝间距(S)与层厚(T)之比Ω=S/T≥1。在名义扩展应变εxx>;10−3时,新的裂缝与一些初始裂缝接近。它们从地层的顶部和底部开始,垂直和横向扩展,在平面上形成一个线性裂缝簇(或走廊)。聚类内的Ω值为0.01-0.05,与自然原型一致。然后,其他初始裂缝或新形成的裂缝成为簇生长的中心,直到εxx>;10−2处全层被簇填满,标志着裂缝从强簇状分布向现在紧密分布的更均匀分布转变。所有这些空间裂缝排列在自然界中也存在,根据我们的研究结果,它们依赖于εxx,受驱动赋能层破裂的过程控制。这一过程涉及到在垂直(静岩)压缩σv作用下不完备材料的横向扩展,并取决于σv值和不完备层与完备层之间弹性模量的对比。这些发现为裂缝聚集现象提供了新的见解,并可以作为改进数值模拟的基础,从而能够重现所获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial arrangements and clustering of opening-mode fractures in experimental models of layered rocks
Arrays of opening-mode fractures were obtained in three-layer experimental models. They consist of a stiff, brittle competent Granular Rock Analog Material (GRAM) layer sandwiched between two more compliant incompetent elastomer layers. All layers are homogeneous with uniform properties and initially under hydrostatic stresses. Fracturing occurs during horizontal unloading (extension) under constant vertical compressive stress σv. The process begins with fractures having spacing (S) to layer thickness (T) ratio of Ω=S/T1. At nominal extension strain εxx>103, new fractures form closely to some of the initial ones. They initiate at the layer top and bottom and propagate both vertically and laterally, forming a linear fracture cluster (or corridor) in plan view. The Ω value within the cluster is 0.01–0.05, consistent with the natural prototypes. Then, other initial or newly formed fractures become centers of cluster growth until the entire layer is filled with clusters at εxx>102, marking the transition from strongly clustered to a more uniform distribution of now closely spaced fractures. All these spatial fracture arrangements also exist in nature, and according to our results depend on εxx, controlled by the process driving the fracturing of competent layers. This process involves the lateral spreading of the incompetent materials under the vertical (lithostatic) compression σv, and depends on the σv value and the contrast in the elastic moduli between competent and incompetent layers. These findings provide new insights into fracture clustering phenomenon and can serve as a basis for improving its numerical modeling that should be able to reproduce the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Structural Geology
Journal of Structural Geology 地学-地球科学综合
CiteScore
6.00
自引率
19.40%
发文量
192
审稿时长
15.7 weeks
期刊介绍: The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信