平面图的区间着色不当性

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Seunghun Lee
{"title":"平面图的区间着色不当性","authors":"Seunghun Lee","doi":"10.1016/j.dam.2025.03.005","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <span><math><mi>G</mi></math></span>, we call an edge coloring of <span><math><mi>G</mi></math></span> an <em>improper interval edge coloring</em> if for every <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the colors, which are integers, of the edges incident with <span><math><mi>v</mi></math></span> form an integral interval. The <em>interval coloring impropriety</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mo>μint</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest value <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has an improper interval edge coloring where at most <span><math><mi>k</mi></math></span> edges of <span><math><mi>G</mi></math></span> with a common endpoint have the same color.</div><div>The purpose of this note is to communicate solutions to two previous questions on interval coloring impropriety, mainly regarding planar graphs. First, we prove <span><math><mrow><mo>μint</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span> for every outerplanar graph <span><math><mi>G</mi></math></span>. This confirms a conjecture by Casselgren and Petrosyan in the affirmative. Secondly, we prove that for each <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, the interval coloring impropriety of <span><math><mi>k</mi></math></span>-trees is unbounded. This refutes a conjecture by Carr, Cho, Crawford, Iršič, Pai and Robinson.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 88-91"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interval coloring impropriety of planar graphs\",\"authors\":\"Seunghun Lee\",\"doi\":\"10.1016/j.dam.2025.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a graph <span><math><mi>G</mi></math></span>, we call an edge coloring of <span><math><mi>G</mi></math></span> an <em>improper interval edge coloring</em> if for every <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the colors, which are integers, of the edges incident with <span><math><mi>v</mi></math></span> form an integral interval. The <em>interval coloring impropriety</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mo>μint</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest value <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> has an improper interval edge coloring where at most <span><math><mi>k</mi></math></span> edges of <span><math><mi>G</mi></math></span> with a common endpoint have the same color.</div><div>The purpose of this note is to communicate solutions to two previous questions on interval coloring impropriety, mainly regarding planar graphs. First, we prove <span><math><mrow><mo>μint</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span> for every outerplanar graph <span><math><mi>G</mi></math></span>. This confirms a conjecture by Casselgren and Petrosyan in the affirmative. Secondly, we prove that for each <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, the interval coloring impropriety of <span><math><mi>k</mi></math></span>-trees is unbounded. This refutes a conjecture by Carr, Cho, Crawford, Iršič, Pai and Robinson.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"370 \",\"pages\":\"Pages 88-91\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001301\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001301","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于图G,如果对于每一个v∈v (G),与v相关的边的整数颜色形成一个积分区间,则称G的边着色为反常区间边着色。G的区间染色不正当性,用μint(G)表示,是使G具有不正当性的区间边染色的最小值k,其中G有一个公共端点的最多k条边具有相同的颜色。这篇笔记的目的是讨论之前关于区间着色不当性的两个问题的解决方案,主要是关于平面图的。首先,我们证明了μint(G)≤2对于每一个外平面图G,这肯定地证实了Casselgren和Petrosyan的一个猜想。其次,我们证明了当k≥2时,k-树的区间着色不合性是无界的。这反驳了Carr、Cho、Crawford、Iršič、Pai和Robinson的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The interval coloring impropriety of planar graphs
For a graph G, we call an edge coloring of G an improper interval edge coloring if for every vV(G) the colors, which are integers, of the edges incident with v form an integral interval. The interval coloring impropriety of G, denoted by μint(G), is the smallest value k such that G has an improper interval edge coloring where at most k edges of G with a common endpoint have the same color.
The purpose of this note is to communicate solutions to two previous questions on interval coloring impropriety, mainly regarding planar graphs. First, we prove μint(G)2 for every outerplanar graph G. This confirms a conjecture by Casselgren and Petrosyan in the affirmative. Secondly, we prove that for each k2, the interval coloring impropriety of k-trees is unbounded. This refutes a conjecture by Carr, Cho, Crawford, Iršič, Pai and Robinson.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信