桂枝伏苓汤通过抑制多发性骨髓瘤外泌体 ERK1 防止骨破坏

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Manya Yu , Jie Zhang , Jiaqi Fu , Suzhen Li , Xing Cui
{"title":"桂枝伏苓汤通过抑制多发性骨髓瘤外泌体 ERK1 防止骨破坏","authors":"Manya Yu ,&nbsp;Jie Zhang ,&nbsp;Jiaqi Fu ,&nbsp;Suzhen Li ,&nbsp;Xing Cui","doi":"10.1016/j.phymed.2025.156627","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Myeloma-related bone disease (MBD) is a common complication of multiple myeloma (MM) that deteriorates patients' quality of life and affects overall survival. Modulating the interaction between myeloma cells and the bone marrow microenvironment may offer therapeutic potential. While certain natural medicines may regulate bone homeostasis by directly targeting osteoclasts or osteoblasts, few studies have explored the effects of intervening in myeloma cells on osteoclasts, particularly through the role of exosomes.</div></div><div><h3>Purpose</h3><div>To investigate the inhibitory effect of <em>Guizhi Fuling</em> Decoction (GZFL) on bone lesions formation induced by exosomes secreted by myeloma cells and provide evidence to support the clinical application of GZFL in treating MBD.</div></div><div><h3>Methods</h3><div>TRAP staining and Von Kossa staining were used to evaluate the inhibition of GZFL on RANKL-induced osteoclastogenesis in vitro. Micro-CT and bone histomorphometric analyses were performed to identify the protective effect of GZFL on bone destruction in vivo. RNA immunoprecipitation (RIP), RNA-seq, and UHPLC-MS/MS were conducted to investigate the MBD targets of GZFL. A clinical trial was carried out to evaluate the efficacy of GZFL capsules in the treatment of MBD.</div></div><div><h3>Results</h3><div>The main bioactive components of GZFL, paeoniflorin, quercitrin and kaempferol, could target ERK1 and downregulate its expression in MM exosomes. In vitro, GZFL treatment inhibited the promoting effect of MM exosomes on osteoclast (OC) formation, bone resorption, and activated ERK1 expression. In vivo, GZFL prolonged survival rate, inhibited the exacerbation of bone lesions caused by MM exosomes and RANKL-induced ERK1 activation in mice model. Clinical data showed that GZFL capsule combined with bortezomib (Bortezomib) and dexamethasone (PD) significantly reduced the numeric rating scale, as well as the expression levels of ERK and RANKL in bone marrow. ERK1 levels exhibited a positive correlation with both the number of bone lesions and RANKL levels. Higher ERK1 expression indicated a worse prognosis.</div></div><div><h3>Conclusion</h3><div>GZFL inhibited MBD progression by reducing MM-derived exosomal ERK1, thereby suppressing RANKL-induced ERK1 activation and the downstream OC formation. GZFL combined with PD regimen had good clinical efficacy and safety in the treatment of MBD.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"140 ","pages":"Article 156627"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guizhi Fuling decoction protects against bone destruction via suppressing exosomal ERK1 in multiple myeloma\",\"authors\":\"Manya Yu ,&nbsp;Jie Zhang ,&nbsp;Jiaqi Fu ,&nbsp;Suzhen Li ,&nbsp;Xing Cui\",\"doi\":\"10.1016/j.phymed.2025.156627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Myeloma-related bone disease (MBD) is a common complication of multiple myeloma (MM) that deteriorates patients' quality of life and affects overall survival. Modulating the interaction between myeloma cells and the bone marrow microenvironment may offer therapeutic potential. While certain natural medicines may regulate bone homeostasis by directly targeting osteoclasts or osteoblasts, few studies have explored the effects of intervening in myeloma cells on osteoclasts, particularly through the role of exosomes.</div></div><div><h3>Purpose</h3><div>To investigate the inhibitory effect of <em>Guizhi Fuling</em> Decoction (GZFL) on bone lesions formation induced by exosomes secreted by myeloma cells and provide evidence to support the clinical application of GZFL in treating MBD.</div></div><div><h3>Methods</h3><div>TRAP staining and Von Kossa staining were used to evaluate the inhibition of GZFL on RANKL-induced osteoclastogenesis in vitro. Micro-CT and bone histomorphometric analyses were performed to identify the protective effect of GZFL on bone destruction in vivo. RNA immunoprecipitation (RIP), RNA-seq, and UHPLC-MS/MS were conducted to investigate the MBD targets of GZFL. A clinical trial was carried out to evaluate the efficacy of GZFL capsules in the treatment of MBD.</div></div><div><h3>Results</h3><div>The main bioactive components of GZFL, paeoniflorin, quercitrin and kaempferol, could target ERK1 and downregulate its expression in MM exosomes. In vitro, GZFL treatment inhibited the promoting effect of MM exosomes on osteoclast (OC) formation, bone resorption, and activated ERK1 expression. In vivo, GZFL prolonged survival rate, inhibited the exacerbation of bone lesions caused by MM exosomes and RANKL-induced ERK1 activation in mice model. Clinical data showed that GZFL capsule combined with bortezomib (Bortezomib) and dexamethasone (PD) significantly reduced the numeric rating scale, as well as the expression levels of ERK and RANKL in bone marrow. ERK1 levels exhibited a positive correlation with both the number of bone lesions and RANKL levels. Higher ERK1 expression indicated a worse prognosis.</div></div><div><h3>Conclusion</h3><div>GZFL inhibited MBD progression by reducing MM-derived exosomal ERK1, thereby suppressing RANKL-induced ERK1 activation and the downstream OC formation. GZFL combined with PD regimen had good clinical efficacy and safety in the treatment of MBD.</div></div>\",\"PeriodicalId\":20212,\"journal\":{\"name\":\"Phytomedicine\",\"volume\":\"140 \",\"pages\":\"Article 156627\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944711325002673\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325002673","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Guizhi Fuling decoction protects against bone destruction via suppressing exosomal ERK1 in multiple myeloma

Guizhi Fuling decoction protects against bone destruction via suppressing exosomal ERK1 in multiple myeloma

Background

Myeloma-related bone disease (MBD) is a common complication of multiple myeloma (MM) that deteriorates patients' quality of life and affects overall survival. Modulating the interaction between myeloma cells and the bone marrow microenvironment may offer therapeutic potential. While certain natural medicines may regulate bone homeostasis by directly targeting osteoclasts or osteoblasts, few studies have explored the effects of intervening in myeloma cells on osteoclasts, particularly through the role of exosomes.

Purpose

To investigate the inhibitory effect of Guizhi Fuling Decoction (GZFL) on bone lesions formation induced by exosomes secreted by myeloma cells and provide evidence to support the clinical application of GZFL in treating MBD.

Methods

TRAP staining and Von Kossa staining were used to evaluate the inhibition of GZFL on RANKL-induced osteoclastogenesis in vitro. Micro-CT and bone histomorphometric analyses were performed to identify the protective effect of GZFL on bone destruction in vivo. RNA immunoprecipitation (RIP), RNA-seq, and UHPLC-MS/MS were conducted to investigate the MBD targets of GZFL. A clinical trial was carried out to evaluate the efficacy of GZFL capsules in the treatment of MBD.

Results

The main bioactive components of GZFL, paeoniflorin, quercitrin and kaempferol, could target ERK1 and downregulate its expression in MM exosomes. In vitro, GZFL treatment inhibited the promoting effect of MM exosomes on osteoclast (OC) formation, bone resorption, and activated ERK1 expression. In vivo, GZFL prolonged survival rate, inhibited the exacerbation of bone lesions caused by MM exosomes and RANKL-induced ERK1 activation in mice model. Clinical data showed that GZFL capsule combined with bortezomib (Bortezomib) and dexamethasone (PD) significantly reduced the numeric rating scale, as well as the expression levels of ERK and RANKL in bone marrow. ERK1 levels exhibited a positive correlation with both the number of bone lesions and RANKL levels. Higher ERK1 expression indicated a worse prognosis.

Conclusion

GZFL inhibited MBD progression by reducing MM-derived exosomal ERK1, thereby suppressing RANKL-induced ERK1 activation and the downstream OC formation. GZFL combined with PD regimen had good clinical efficacy and safety in the treatment of MBD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信