研究聚合物电解质膜水电解槽中肋/通道尺度多孔传输层的质量传输阻力:建模与设计

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Pablo A. García-Salaberri , Jack Todd Lang , Hung-Ming Chang , Nausir Firas , Hasan Shazhad , Iryna V. Zenyuk
{"title":"研究聚合物电解质膜水电解槽中肋/通道尺度多孔传输层的质量传输阻力:建模与设计","authors":"Pablo A. García-Salaberri ,&nbsp;Jack Todd Lang ,&nbsp;Hung-Ming Chang ,&nbsp;Nausir Firas ,&nbsp;Hasan Shazhad ,&nbsp;Iryna V. Zenyuk","doi":"10.1016/j.ijheatmasstransfer.2025.126889","DOIUrl":null,"url":null,"abstract":"<div><div>The porous transport layer (PTL) plays a relevant role in the efficiency of polymer electrolyte membrane water electrolyzers (PEMWE). Extraction of good design guidelines for this porous component is necessary for efficient water/oxygen transport. In this regard, numerical modeling provides a versatile tool to examine large parameter set and determine optimal PTL conditions to be verified experimentally. Here, a hybrid model is presented to analyze two-phase transport of oxygen and water in the anode PTL of a PEMWE. Oxygen capillary transport is modeled with a multi-cluster invasion-percolation algorithm, while water convective transport is modeled with a continuum formulation that incorporates the blockage of gas saturation. The model is validated against in-operando X-ray computed tomography data of the oxygen saturation distribution at the rib/channel scale. Subsequently, a comprehensive parametric analysis is presented, considering the following variables: ( <span><math><mi>i</mi></math></span>) PTL slenderness ratio, (<span><math><mrow><mi>i</mi><mi>i</mi></mrow></math></span>) flow-field open area fraction, (<span><math><mrow><mi>i</mi><mi>i</mi><mi>i</mi></mrow></math></span>) PTL isotropy, (<span><math><mrow><mi>i</mi><mi>v</mi></mrow></math></span>) PTL average pore radius, and (<span><math><mi>v</mi></math></span>) PTL pore-size heterogeneity. Among other conclusions, the results show that the water transport resistance under the rib can lead to non-negligible mass transport losses at high current density. Water transport from the channel to the catalyst layer can be promoted by: (<span><math><mi>i</mi></math></span>) the use of PTLs with a slenderness ratio, defined as the PTL thickness to rib half-width ratio, around 0.5, (<span><math><mrow><mi>i</mi><mi>i</mi></mrow></math></span>) the increase of the flow-field open area fraction, (<span><math><mrow><mi>i</mi><mi>i</mi><mi>i</mi></mrow></math></span>) the design of highly anisotropic PTLs with a relatively large pore radius between <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>∼</mo><mn>10</mn><mo>−</mo><mn>40</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, and (<span><math><mrow><mi>i</mi><mi>v</mi></mrow></math></span>) increasing the homogeneity of the PTL microstructure.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"244 ","pages":"Article 126889"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining the mass transport resistance of porous transport layers at the rib/channel scale in polymer electrolyte membrane water electrolyzers: Modeling and design\",\"authors\":\"Pablo A. García-Salaberri ,&nbsp;Jack Todd Lang ,&nbsp;Hung-Ming Chang ,&nbsp;Nausir Firas ,&nbsp;Hasan Shazhad ,&nbsp;Iryna V. Zenyuk\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.126889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The porous transport layer (PTL) plays a relevant role in the efficiency of polymer electrolyte membrane water electrolyzers (PEMWE). Extraction of good design guidelines for this porous component is necessary for efficient water/oxygen transport. In this regard, numerical modeling provides a versatile tool to examine large parameter set and determine optimal PTL conditions to be verified experimentally. Here, a hybrid model is presented to analyze two-phase transport of oxygen and water in the anode PTL of a PEMWE. Oxygen capillary transport is modeled with a multi-cluster invasion-percolation algorithm, while water convective transport is modeled with a continuum formulation that incorporates the blockage of gas saturation. The model is validated against in-operando X-ray computed tomography data of the oxygen saturation distribution at the rib/channel scale. Subsequently, a comprehensive parametric analysis is presented, considering the following variables: ( <span><math><mi>i</mi></math></span>) PTL slenderness ratio, (<span><math><mrow><mi>i</mi><mi>i</mi></mrow></math></span>) flow-field open area fraction, (<span><math><mrow><mi>i</mi><mi>i</mi><mi>i</mi></mrow></math></span>) PTL isotropy, (<span><math><mrow><mi>i</mi><mi>v</mi></mrow></math></span>) PTL average pore radius, and (<span><math><mi>v</mi></math></span>) PTL pore-size heterogeneity. Among other conclusions, the results show that the water transport resistance under the rib can lead to non-negligible mass transport losses at high current density. Water transport from the channel to the catalyst layer can be promoted by: (<span><math><mi>i</mi></math></span>) the use of PTLs with a slenderness ratio, defined as the PTL thickness to rib half-width ratio, around 0.5, (<span><math><mrow><mi>i</mi><mi>i</mi></mrow></math></span>) the increase of the flow-field open area fraction, (<span><math><mrow><mi>i</mi><mi>i</mi><mi>i</mi></mrow></math></span>) the design of highly anisotropic PTLs with a relatively large pore radius between <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>∼</mo><mn>10</mn><mo>−</mo><mn>40</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, and (<span><math><mrow><mi>i</mi><mi>v</mi></mrow></math></span>) increasing the homogeneity of the PTL microstructure.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"244 \",\"pages\":\"Article 126889\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025002303\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025002303","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

多孔传输层(PTL)对聚合物电解质膜水电解槽(PEMWE)的效率起着重要作用。要实现高效的水/氧传输,就必须为这一多孔组件制定良好的设计准则。在这方面,数值建模提供了一种通用工具,可用于检查大型参数集和确定最佳 PTL 条件,并通过实验进行验证。本文介绍了一种混合模型,用于分析 PEMWE 阳极 PTL 中氧气和水的两相传输。氧的毛细管传输采用多簇入侵-渗透算法建模,而水的对流传输则采用包含气体饱和阻塞的连续体公式建模。该模型根据肋骨/通道尺度氧饱和度分布的术中 X 射线计算机断层扫描数据进行了验证。随后,对以下变量进行了全面的参数分析:(i) PTL 细长比,(ii) 流场开口面积分数,(iii) PTL 各向同性,(iv) PTL 平均孔隙半径,以及 (v) PTL 孔隙大小异质性。除其他结论外,研究结果还表明,在高电流密度下,肋下的水传输阻力会导致不可忽略的质量传输损失。可以通过以下方法促进水从通道向催化剂层的传输:(i) 使用细长比(定义为 PTL 厚度与肋条半宽之比)约为 0.5 的 PTL,(ii) 增加流场开阔面积分数,(iii) 设计孔隙半径在 rp∼10-40μm 之间的高各向异性 PTL,以及 (iv) 增加 PTL 微观结构的均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining the mass transport resistance of porous transport layers at the rib/channel scale in polymer electrolyte membrane water electrolyzers: Modeling and design
The porous transport layer (PTL) plays a relevant role in the efficiency of polymer electrolyte membrane water electrolyzers (PEMWE). Extraction of good design guidelines for this porous component is necessary for efficient water/oxygen transport. In this regard, numerical modeling provides a versatile tool to examine large parameter set and determine optimal PTL conditions to be verified experimentally. Here, a hybrid model is presented to analyze two-phase transport of oxygen and water in the anode PTL of a PEMWE. Oxygen capillary transport is modeled with a multi-cluster invasion-percolation algorithm, while water convective transport is modeled with a continuum formulation that incorporates the blockage of gas saturation. The model is validated against in-operando X-ray computed tomography data of the oxygen saturation distribution at the rib/channel scale. Subsequently, a comprehensive parametric analysis is presented, considering the following variables: ( i) PTL slenderness ratio, (ii) flow-field open area fraction, (iii) PTL isotropy, (iv) PTL average pore radius, and (v) PTL pore-size heterogeneity. Among other conclusions, the results show that the water transport resistance under the rib can lead to non-negligible mass transport losses at high current density. Water transport from the channel to the catalyst layer can be promoted by: (i) the use of PTLs with a slenderness ratio, defined as the PTL thickness to rib half-width ratio, around 0.5, (ii) the increase of the flow-field open area fraction, (iii) the design of highly anisotropic PTLs with a relatively large pore radius between rp1040μm, and (iv) increasing the homogeneity of the PTL microstructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信