基于vo2 -石墨烯的四态超宽带太赫兹超材料,具有可切换的吸收、反射和传输

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Jian Shen, Han Li, Xuejun Qiu, Junjiao Lu, Yi Wang, Chengzhi Jin
{"title":"基于vo2 -石墨烯的四态超宽带太赫兹超材料,具有可切换的吸收、反射和传输","authors":"Jian Shen,&nbsp;Han Li,&nbsp;Xuejun Qiu,&nbsp;Junjiao Lu,&nbsp;Yi Wang,&nbsp;Chengzhi Jin","doi":"10.1016/j.micrna.2025.208143","DOIUrl":null,"url":null,"abstract":"<div><div>A multifunctional ultra-wideband (UWB) terahertz (THz) metamaterial device based on VO<sub>2</sub> and graphene is proposed, capable of achieving tunable and switchable high-frequency absorption broadband (HFBA)/low-frequency broadband absorption (LFBA)/reflection/transmission in the THz band. The mechanism is clearly explained by impedance matching theory, the electric field strength distributions (EFSDs) and equivalent simplified model. Based on the simulation results, the localized surface plasmon resonance (LSPR) of the patterned graphene reaches LFBA above 90 % between 2.42 and 4.83 THz, and the absorptivity can be changed from 19 % to 99 % by varying the graphene's Fermi level. The electric and magnetic resonances produce HFBA with an adjustable absorption amplitude between 17 % and 98 % in the 3.02–7.86 THz range by controlling the conductivity of the annular VO<sub>2</sub>. In addition, reflection and transmission can be adjusted between 0 % and 80 %. The proposed metamaterial device exhibits strong polarization- and angle-of-incidence-independent properties, ensuring its stable application in intelligent absorption and electromagnetic shielding.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"203 ","pages":"Article 208143"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VO2-Graphene based four-state ultra-wideband terahertz metamaterial with switchable absorption, reflection, and transmission\",\"authors\":\"Jian Shen,&nbsp;Han Li,&nbsp;Xuejun Qiu,&nbsp;Junjiao Lu,&nbsp;Yi Wang,&nbsp;Chengzhi Jin\",\"doi\":\"10.1016/j.micrna.2025.208143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A multifunctional ultra-wideband (UWB) terahertz (THz) metamaterial device based on VO<sub>2</sub> and graphene is proposed, capable of achieving tunable and switchable high-frequency absorption broadband (HFBA)/low-frequency broadband absorption (LFBA)/reflection/transmission in the THz band. The mechanism is clearly explained by impedance matching theory, the electric field strength distributions (EFSDs) and equivalent simplified model. Based on the simulation results, the localized surface plasmon resonance (LSPR) of the patterned graphene reaches LFBA above 90 % between 2.42 and 4.83 THz, and the absorptivity can be changed from 19 % to 99 % by varying the graphene's Fermi level. The electric and magnetic resonances produce HFBA with an adjustable absorption amplitude between 17 % and 98 % in the 3.02–7.86 THz range by controlling the conductivity of the annular VO<sub>2</sub>. In addition, reflection and transmission can be adjusted between 0 % and 80 %. The proposed metamaterial device exhibits strong polarization- and angle-of-incidence-independent properties, ensuring its stable application in intelligent absorption and electromagnetic shielding.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"203 \",\"pages\":\"Article 208143\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277301232500072X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277301232500072X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于VO2和石墨烯的多功能超宽带(UWB)太赫兹(THz)超材料器件,能够在太赫兹波段实现可调谐和可切换的高频吸收宽带(HFBA)/低频宽带吸收(LFBA)/反射/传输。通过阻抗匹配理论、电场强度分布理论和等效简化模型对其机理进行了解释。模拟结果表明,在2.42 ~ 4.83 THz范围内,石墨烯的局部表面等离子体共振(LSPR)达到90%以上的LFBA,并且通过改变石墨烯的费米能级,其吸收率可以从19%改变到99%。在3.02 ~ 7.86 THz范围内,通过控制环形VO2的电导率,产生了可调吸收幅度在17% ~ 98%之间的HFBA。另外,反射和透射可以在0% ~ 80%之间调节。所提出的超材料器件具有较强的与极化和入射角无关的特性,保证了其在智能吸收和电磁屏蔽方面的稳定应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VO2-Graphene based four-state ultra-wideband terahertz metamaterial with switchable absorption, reflection, and transmission
A multifunctional ultra-wideband (UWB) terahertz (THz) metamaterial device based on VO2 and graphene is proposed, capable of achieving tunable and switchable high-frequency absorption broadband (HFBA)/low-frequency broadband absorption (LFBA)/reflection/transmission in the THz band. The mechanism is clearly explained by impedance matching theory, the electric field strength distributions (EFSDs) and equivalent simplified model. Based on the simulation results, the localized surface plasmon resonance (LSPR) of the patterned graphene reaches LFBA above 90 % between 2.42 and 4.83 THz, and the absorptivity can be changed from 19 % to 99 % by varying the graphene's Fermi level. The electric and magnetic resonances produce HFBA with an adjustable absorption amplitude between 17 % and 98 % in the 3.02–7.86 THz range by controlling the conductivity of the annular VO2. In addition, reflection and transmission can be adjusted between 0 % and 80 %. The proposed metamaterial device exhibits strong polarization- and angle-of-incidence-independent properties, ensuring its stable application in intelligent absorption and electromagnetic shielding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信