太坐标模拟中轴子弦的缩放密度

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
José Correia, Mark Hindmarsh, Joanes Lizarraga, Asier Lopez-Eiguren, Kari Rummukainen, Jon Urrestilla
{"title":"太坐标模拟中轴子弦的缩放密度","authors":"José Correia, Mark Hindmarsh, Joanes Lizarraga, Asier Lopez-Eiguren, Kari Rummukainen, Jon Urrestilla","doi":"10.1103/physrevd.111.063532","DOIUrl":null,"url":null,"abstract":"We report on a study of axion string networks using fixed-grid simulations of up to 16384 points per side. The length of string can be characterized in terms of standard dimensionless parameters ζ</a:mi></a:mrow>w</a:mi></a:mrow></a:msub></a:mrow></a:math> and <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:msub><d:mi>ζ</d:mi><d:mi mathvariant=\"normal\">r</d:mi></d:msub></d:math>, the length density measured in the cosmic rest frame and the string rest frame, scaled with the cosmic time <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>t</g:mi></g:math>. The motion of the string can be characterized by the root-mean-square (RMS) velocity of the string. Starting from a range of initial length densities and velocities, we analyze the string network in the standard scaling framework and find evolution toward a fixed point with estimated values <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mover accent=\"true\"><i:mrow><i:mi>ζ</i:mi></i:mrow><i:mrow><i:mo stretchy=\"false\">^</i:mo></i:mrow></i:mover></i:mrow><i:mrow><i:mi mathvariant=\"normal\">w</i:mi><i:mo>,</i:mo><i:mo>*</i:mo></i:mrow></i:msub><i:mo>=</i:mo><i:mn>1.220</i:mn><i:mo stretchy=\"false\">(</i:mo><i:mn>57</i:mn><i:mo stretchy=\"false\">)</i:mo></i:mrow></i:math> and <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:msub><p:mover accent=\"true\"><p:mi>ζ</p:mi><p:mo stretchy=\"false\">^</p:mo></p:mover><p:mrow><p:mi mathvariant=\"normal\">r</p:mi><p:mo>,</p:mo><p:mo>*</p:mo></p:mrow></p:msub><p:mo>=</p:mo><p:mn>1.491</p:mn><p:mo stretchy=\"false\">(</p:mo><p:mn>93</p:mn><p:mo stretchy=\"false\">)</p:mo></p:math>. The two measures are related by the RMS velocity, which we estimate to be <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msub><w:mover accent=\"true\"><w:mi>v</w:mi><w:mo stretchy=\"false\">^</w:mo></w:mover><w:mo>*</w:mo></w:msub><w:mo>=</w:mo><w:mn>0.5705</w:mn><w:mo stretchy=\"false\">(</w:mo><w:mn>93</w:mn><w:mo stretchy=\"false\">)</w:mo></w:math>. The length density is consistent with previous measurements, while the velocity is about 5% lower. For simulations starting from low enough density, the length density parameters <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:msub><cb:mi>ζ</cb:mi><cb:mi mathvariant=\"normal\">w</cb:mi></cb:msub></cb:math> and <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:msub><fb:mi>ζ</fb:mi><fb:mi mathvariant=\"normal\">r</fb:mi></fb:msub></fb:math> remain below their fixed point values throughout, while growing slowly, giving rise to an impression of approximately logarithmic increase with time. This has been proposed as the true long-term behavior. We find that the growth tends to slow down as the values of <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:msub><ib:mi>ζ</ib:mi><ib:mi mathvariant=\"normal\">w</ib:mi></ib:msub></ib:math> and <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:msub><lb:mi>ζ</lb:mi><lb:mi mathvariant=\"normal\">r</lb:mi></lb:msub></lb:math> identified as fixed points are approached. In the case of <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ob:msub><ob:mi>ζ</ob:mi><ob:mi mathvariant=\"normal\">r</ob:mi></ob:msub></ob:math>, the growth stops for simulations that started close to the fixed point length density. The difference between <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:msub><rb:mi>ζ</rb:mi><rb:mi mathvariant=\"normal\">w</rb:mi></rb:msub></rb:math> and <ub:math xmlns:ub=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ub:msub><ub:mi>ζ</ub:mi><ub:mi mathvariant=\"normal\">r</ub:mi></ub:msub></ub:math> can be understood to result from the continuing velocity evolution. Our results indicate that the growth of <xb:math xmlns:xb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xb:msub><xb:mi>ζ</xb:mi><xb:mi mathvariant=\"normal\">w</xb:mi></xb:msub></xb:math> is a transient appearing at low densities and while the velocity is converging. This highlights the importance of studying the string density and the velocity together, and the preparation of initial conditions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"24 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling density of axion strings in terasite simulations\",\"authors\":\"José Correia, Mark Hindmarsh, Joanes Lizarraga, Asier Lopez-Eiguren, Kari Rummukainen, Jon Urrestilla\",\"doi\":\"10.1103/physrevd.111.063532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on a study of axion string networks using fixed-grid simulations of up to 16384 points per side. The length of string can be characterized in terms of standard dimensionless parameters ζ</a:mi></a:mrow>w</a:mi></a:mrow></a:msub></a:mrow></a:math> and <d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><d:msub><d:mi>ζ</d:mi><d:mi mathvariant=\\\"normal\\\">r</d:mi></d:msub></d:math>, the length density measured in the cosmic rest frame and the string rest frame, scaled with the cosmic time <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>t</g:mi></g:math>. The motion of the string can be characterized by the root-mean-square (RMS) velocity of the string. Starting from a range of initial length densities and velocities, we analyze the string network in the standard scaling framework and find evolution toward a fixed point with estimated values <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mrow><i:msub><i:mrow><i:mover accent=\\\"true\\\"><i:mrow><i:mi>ζ</i:mi></i:mrow><i:mrow><i:mo stretchy=\\\"false\\\">^</i:mo></i:mrow></i:mover></i:mrow><i:mrow><i:mi mathvariant=\\\"normal\\\">w</i:mi><i:mo>,</i:mo><i:mo>*</i:mo></i:mrow></i:msub><i:mo>=</i:mo><i:mn>1.220</i:mn><i:mo stretchy=\\\"false\\\">(</i:mo><i:mn>57</i:mn><i:mo stretchy=\\\"false\\\">)</i:mo></i:mrow></i:math> and <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:msub><p:mover accent=\\\"true\\\"><p:mi>ζ</p:mi><p:mo stretchy=\\\"false\\\">^</p:mo></p:mover><p:mrow><p:mi mathvariant=\\\"normal\\\">r</p:mi><p:mo>,</p:mo><p:mo>*</p:mo></p:mrow></p:msub><p:mo>=</p:mo><p:mn>1.491</p:mn><p:mo stretchy=\\\"false\\\">(</p:mo><p:mn>93</p:mn><p:mo stretchy=\\\"false\\\">)</p:mo></p:math>. The two measures are related by the RMS velocity, which we estimate to be <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:msub><w:mover accent=\\\"true\\\"><w:mi>v</w:mi><w:mo stretchy=\\\"false\\\">^</w:mo></w:mover><w:mo>*</w:mo></w:msub><w:mo>=</w:mo><w:mn>0.5705</w:mn><w:mo stretchy=\\\"false\\\">(</w:mo><w:mn>93</w:mn><w:mo stretchy=\\\"false\\\">)</w:mo></w:math>. The length density is consistent with previous measurements, while the velocity is about 5% lower. For simulations starting from low enough density, the length density parameters <cb:math xmlns:cb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><cb:msub><cb:mi>ζ</cb:mi><cb:mi mathvariant=\\\"normal\\\">w</cb:mi></cb:msub></cb:math> and <fb:math xmlns:fb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><fb:msub><fb:mi>ζ</fb:mi><fb:mi mathvariant=\\\"normal\\\">r</fb:mi></fb:msub></fb:math> remain below their fixed point values throughout, while growing slowly, giving rise to an impression of approximately logarithmic increase with time. This has been proposed as the true long-term behavior. We find that the growth tends to slow down as the values of <ib:math xmlns:ib=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ib:msub><ib:mi>ζ</ib:mi><ib:mi mathvariant=\\\"normal\\\">w</ib:mi></ib:msub></ib:math> and <lb:math xmlns:lb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><lb:msub><lb:mi>ζ</lb:mi><lb:mi mathvariant=\\\"normal\\\">r</lb:mi></lb:msub></lb:math> identified as fixed points are approached. In the case of <ob:math xmlns:ob=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ob:msub><ob:mi>ζ</ob:mi><ob:mi mathvariant=\\\"normal\\\">r</ob:mi></ob:msub></ob:math>, the growth stops for simulations that started close to the fixed point length density. The difference between <rb:math xmlns:rb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><rb:msub><rb:mi>ζ</rb:mi><rb:mi mathvariant=\\\"normal\\\">w</rb:mi></rb:msub></rb:math> and <ub:math xmlns:ub=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ub:msub><ub:mi>ζ</ub:mi><ub:mi mathvariant=\\\"normal\\\">r</ub:mi></ub:msub></ub:math> can be understood to result from the continuing velocity evolution. Our results indicate that the growth of <xb:math xmlns:xb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><xb:msub><xb:mi>ζ</xb:mi><xb:mi mathvariant=\\\"normal\\\">w</xb:mi></xb:msub></xb:math> is a transient appearing at low densities and while the velocity is converging. This highlights the importance of studying the string density and the velocity together, and the preparation of initial conditions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.063532\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.063532","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了一项研究轴子弦网络使用固定网格模拟高达16384点每边。弦的长度可以用标准的无量纲参数ζw和ζr来表征,即在宇宙静止坐标系和弦静止坐标系中测量的长度密度,与宇宙时间t成比例。弦的运动可以用弦的均方根(RMS)速度来表征。从初始长度密度和速度的范围开始,我们在标准尺度框架中分析了弦网络,并找到了向固定点的演化,其估计值为ζ^w,*=1.220(57)和ζ^r,*=1.491(93)。这两项测量与均方根速度有关,我们估计其为v^*=0.5705(93)。长度密度与之前的测量结果一致,而速度则降低了约5%。对于从足够低的密度开始的模拟,长度密度参数ζw和ζr始终保持在其定点值以下,同时缓慢增长,产生随时间近似对数增长的印象。这被认为是真正的长期行为。我们发现,当ζw和ζr被确定为定点时,增长趋于放缓。在ζr的情况下,当模拟开始接近固定点长度密度时,增长停止。ζw和ζr之间的差异可以理解为由持续的速度演化引起的。我们的结果表明,ζw的增长是一种瞬态增长,出现在低密度和速度收敛时。这突出了弦密度和速度同时研究以及初始条件准备的重要性。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling density of axion strings in terasite simulations
We report on a study of axion string networks using fixed-grid simulations of up to 16384 points per side. The length of string can be characterized in terms of standard dimensionless parameters ζw and ζr, the length density measured in the cosmic rest frame and the string rest frame, scaled with the cosmic time t. The motion of the string can be characterized by the root-mean-square (RMS) velocity of the string. Starting from a range of initial length densities and velocities, we analyze the string network in the standard scaling framework and find evolution toward a fixed point with estimated values ζ^w,*=1.220(57) and ζ^r,*=1.491(93). The two measures are related by the RMS velocity, which we estimate to be v^*=0.5705(93). The length density is consistent with previous measurements, while the velocity is about 5% lower. For simulations starting from low enough density, the length density parameters ζw and ζr remain below their fixed point values throughout, while growing slowly, giving rise to an impression of approximately logarithmic increase with time. This has been proposed as the true long-term behavior. We find that the growth tends to slow down as the values of ζw and ζr identified as fixed points are approached. In the case of ζr, the growth stops for simulations that started close to the fixed point length density. The difference between ζw and ζr can be understood to result from the continuing velocity evolution. Our results indicate that the growth of ζw is a transient appearing at low densities and while the velocity is converging. This highlights the importance of studying the string density and the velocity together, and the preparation of initial conditions. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信