José Correia, Mark Hindmarsh, Joanes Lizarraga, Asier Lopez-Eiguren, Kari Rummukainen, Jon Urrestilla
{"title":"太坐标模拟中轴子弦的缩放密度","authors":"José Correia, Mark Hindmarsh, Joanes Lizarraga, Asier Lopez-Eiguren, Kari Rummukainen, Jon Urrestilla","doi":"10.1103/physrevd.111.063532","DOIUrl":null,"url":null,"abstract":"We report on a study of axion string networks using fixed-grid simulations of up to 16384 points per side. The length of string can be characterized in terms of standard dimensionless parameters ζ</a:mi></a:mrow>w</a:mi></a:mrow></a:msub></a:mrow></a:math> and <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:msub><d:mi>ζ</d:mi><d:mi mathvariant=\"normal\">r</d:mi></d:msub></d:math>, the length density measured in the cosmic rest frame and the string rest frame, scaled with the cosmic time <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>t</g:mi></g:math>. The motion of the string can be characterized by the root-mean-square (RMS) velocity of the string. Starting from a range of initial length densities and velocities, we analyze the string network in the standard scaling framework and find evolution toward a fixed point with estimated values <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:msub><i:mrow><i:mover accent=\"true\"><i:mrow><i:mi>ζ</i:mi></i:mrow><i:mrow><i:mo stretchy=\"false\">^</i:mo></i:mrow></i:mover></i:mrow><i:mrow><i:mi mathvariant=\"normal\">w</i:mi><i:mo>,</i:mo><i:mo>*</i:mo></i:mrow></i:msub><i:mo>=</i:mo><i:mn>1.220</i:mn><i:mo stretchy=\"false\">(</i:mo><i:mn>57</i:mn><i:mo stretchy=\"false\">)</i:mo></i:mrow></i:math> and <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:msub><p:mover accent=\"true\"><p:mi>ζ</p:mi><p:mo stretchy=\"false\">^</p:mo></p:mover><p:mrow><p:mi mathvariant=\"normal\">r</p:mi><p:mo>,</p:mo><p:mo>*</p:mo></p:mrow></p:msub><p:mo>=</p:mo><p:mn>1.491</p:mn><p:mo stretchy=\"false\">(</p:mo><p:mn>93</p:mn><p:mo stretchy=\"false\">)</p:mo></p:math>. The two measures are related by the RMS velocity, which we estimate to be <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msub><w:mover accent=\"true\"><w:mi>v</w:mi><w:mo stretchy=\"false\">^</w:mo></w:mover><w:mo>*</w:mo></w:msub><w:mo>=</w:mo><w:mn>0.5705</w:mn><w:mo stretchy=\"false\">(</w:mo><w:mn>93</w:mn><w:mo stretchy=\"false\">)</w:mo></w:math>. The length density is consistent with previous measurements, while the velocity is about 5% lower. For simulations starting from low enough density, the length density parameters <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:msub><cb:mi>ζ</cb:mi><cb:mi mathvariant=\"normal\">w</cb:mi></cb:msub></cb:math> and <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:msub><fb:mi>ζ</fb:mi><fb:mi mathvariant=\"normal\">r</fb:mi></fb:msub></fb:math> remain below their fixed point values throughout, while growing slowly, giving rise to an impression of approximately logarithmic increase with time. This has been proposed as the true long-term behavior. We find that the growth tends to slow down as the values of <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:msub><ib:mi>ζ</ib:mi><ib:mi mathvariant=\"normal\">w</ib:mi></ib:msub></ib:math> and <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:msub><lb:mi>ζ</lb:mi><lb:mi mathvariant=\"normal\">r</lb:mi></lb:msub></lb:math> identified as fixed points are approached. In the case of <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ob:msub><ob:mi>ζ</ob:mi><ob:mi mathvariant=\"normal\">r</ob:mi></ob:msub></ob:math>, the growth stops for simulations that started close to the fixed point length density. The difference between <rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rb:msub><rb:mi>ζ</rb:mi><rb:mi mathvariant=\"normal\">w</rb:mi></rb:msub></rb:math> and <ub:math xmlns:ub=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ub:msub><ub:mi>ζ</ub:mi><ub:mi mathvariant=\"normal\">r</ub:mi></ub:msub></ub:math> can be understood to result from the continuing velocity evolution. Our results indicate that the growth of <xb:math xmlns:xb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xb:msub><xb:mi>ζ</xb:mi><xb:mi mathvariant=\"normal\">w</xb:mi></xb:msub></xb:math> is a transient appearing at low densities and while the velocity is converging. This highlights the importance of studying the string density and the velocity together, and the preparation of initial conditions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"24 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling density of axion strings in terasite simulations\",\"authors\":\"José Correia, Mark Hindmarsh, Joanes Lizarraga, Asier Lopez-Eiguren, Kari Rummukainen, Jon Urrestilla\",\"doi\":\"10.1103/physrevd.111.063532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on a study of axion string networks using fixed-grid simulations of up to 16384 points per side. The length of string can be characterized in terms of standard dimensionless parameters ζ</a:mi></a:mrow>w</a:mi></a:mrow></a:msub></a:mrow></a:math> and <d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><d:msub><d:mi>ζ</d:mi><d:mi mathvariant=\\\"normal\\\">r</d:mi></d:msub></d:math>, the length density measured in the cosmic rest frame and the string rest frame, scaled with the cosmic time <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>t</g:mi></g:math>. The motion of the string can be characterized by the root-mean-square (RMS) velocity of the string. Starting from a range of initial length densities and velocities, we analyze the string network in the standard scaling framework and find evolution toward a fixed point with estimated values <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mrow><i:msub><i:mrow><i:mover accent=\\\"true\\\"><i:mrow><i:mi>ζ</i:mi></i:mrow><i:mrow><i:mo stretchy=\\\"false\\\">^</i:mo></i:mrow></i:mover></i:mrow><i:mrow><i:mi mathvariant=\\\"normal\\\">w</i:mi><i:mo>,</i:mo><i:mo>*</i:mo></i:mrow></i:msub><i:mo>=</i:mo><i:mn>1.220</i:mn><i:mo stretchy=\\\"false\\\">(</i:mo><i:mn>57</i:mn><i:mo stretchy=\\\"false\\\">)</i:mo></i:mrow></i:math> and <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:msub><p:mover accent=\\\"true\\\"><p:mi>ζ</p:mi><p:mo stretchy=\\\"false\\\">^</p:mo></p:mover><p:mrow><p:mi mathvariant=\\\"normal\\\">r</p:mi><p:mo>,</p:mo><p:mo>*</p:mo></p:mrow></p:msub><p:mo>=</p:mo><p:mn>1.491</p:mn><p:mo stretchy=\\\"false\\\">(</p:mo><p:mn>93</p:mn><p:mo stretchy=\\\"false\\\">)</p:mo></p:math>. The two measures are related by the RMS velocity, which we estimate to be <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:msub><w:mover accent=\\\"true\\\"><w:mi>v</w:mi><w:mo stretchy=\\\"false\\\">^</w:mo></w:mover><w:mo>*</w:mo></w:msub><w:mo>=</w:mo><w:mn>0.5705</w:mn><w:mo stretchy=\\\"false\\\">(</w:mo><w:mn>93</w:mn><w:mo stretchy=\\\"false\\\">)</w:mo></w:math>. The length density is consistent with previous measurements, while the velocity is about 5% lower. For simulations starting from low enough density, the length density parameters <cb:math xmlns:cb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><cb:msub><cb:mi>ζ</cb:mi><cb:mi mathvariant=\\\"normal\\\">w</cb:mi></cb:msub></cb:math> and <fb:math xmlns:fb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><fb:msub><fb:mi>ζ</fb:mi><fb:mi mathvariant=\\\"normal\\\">r</fb:mi></fb:msub></fb:math> remain below their fixed point values throughout, while growing slowly, giving rise to an impression of approximately logarithmic increase with time. This has been proposed as the true long-term behavior. We find that the growth tends to slow down as the values of <ib:math xmlns:ib=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ib:msub><ib:mi>ζ</ib:mi><ib:mi mathvariant=\\\"normal\\\">w</ib:mi></ib:msub></ib:math> and <lb:math xmlns:lb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><lb:msub><lb:mi>ζ</lb:mi><lb:mi mathvariant=\\\"normal\\\">r</lb:mi></lb:msub></lb:math> identified as fixed points are approached. In the case of <ob:math xmlns:ob=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ob:msub><ob:mi>ζ</ob:mi><ob:mi mathvariant=\\\"normal\\\">r</ob:mi></ob:msub></ob:math>, the growth stops for simulations that started close to the fixed point length density. The difference between <rb:math xmlns:rb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><rb:msub><rb:mi>ζ</rb:mi><rb:mi mathvariant=\\\"normal\\\">w</rb:mi></rb:msub></rb:math> and <ub:math xmlns:ub=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ub:msub><ub:mi>ζ</ub:mi><ub:mi mathvariant=\\\"normal\\\">r</ub:mi></ub:msub></ub:math> can be understood to result from the continuing velocity evolution. Our results indicate that the growth of <xb:math xmlns:xb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><xb:msub><xb:mi>ζ</xb:mi><xb:mi mathvariant=\\\"normal\\\">w</xb:mi></xb:msub></xb:math> is a transient appearing at low densities and while the velocity is converging. This highlights the importance of studying the string density and the velocity together, and the preparation of initial conditions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.063532\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.063532","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Scaling density of axion strings in terasite simulations
We report on a study of axion string networks using fixed-grid simulations of up to 16384 points per side. The length of string can be characterized in terms of standard dimensionless parameters ζw and ζr, the length density measured in the cosmic rest frame and the string rest frame, scaled with the cosmic time t. The motion of the string can be characterized by the root-mean-square (RMS) velocity of the string. Starting from a range of initial length densities and velocities, we analyze the string network in the standard scaling framework and find evolution toward a fixed point with estimated values ζ^w,*=1.220(57) and ζ^r,*=1.491(93). The two measures are related by the RMS velocity, which we estimate to be v^*=0.5705(93). The length density is consistent with previous measurements, while the velocity is about 5% lower. For simulations starting from low enough density, the length density parameters ζw and ζr remain below their fixed point values throughout, while growing slowly, giving rise to an impression of approximately logarithmic increase with time. This has been proposed as the true long-term behavior. We find that the growth tends to slow down as the values of ζw and ζr identified as fixed points are approached. In the case of ζr, the growth stops for simulations that started close to the fixed point length density. The difference between ζw and ζr can be understood to result from the continuing velocity evolution. Our results indicate that the growth of ζw is a transient appearing at low densities and while the velocity is converging. This highlights the importance of studying the string density and the velocity together, and the preparation of initial conditions. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.