Fe-N-C催化剂氧还原反应性能增强机理的探讨:铁价态和氮含量的影响

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yudong Zhang, Yuan He, Jun Li, Yang Xu, Yang Yang, Yao Ge, Xun Zhu, Qiang Liao
{"title":"Fe-N-C催化剂氧还原反应性能增强机理的探讨:铁价态和氮含量的影响","authors":"Yudong Zhang, Yuan He, Jun Li, Yang Xu, Yang Yang, Yao Ge, Xun Zhu, Qiang Liao","doi":"10.1021/acsami.4c20112","DOIUrl":null,"url":null,"abstract":"Optimizing non-noble catalysts for the oxygen reduction reaction (ORR) is crucial for advancing energy storage and conversion technologies. This study investigates the influence of iron valence states and nitrogen precursor contents on the physicochemical properties and electrochemical performance of lignin-based Fe–N–C catalysts. Catalysts are synthesized using different valence iron sources and varying pyrrole contents. The results reveal that iron(II) doping increases microporosity and specific surface area, while iron(III) doping enhances mesoporous and iron contents of the carbon materials. XPS and Raman spectroscopy confirm the successful incorporation of Fe–N<sub><i>x</i></sub> active sites in the as-prepared LFe<sub>III</sub>P<sub><i>x</i></sub> catalysts. Electrochemical tests demonstrate that LFe<sub>III</sub>P<sub>10</sub> exhibits the highest ORR activity, surpassing commercial Pt/C in half-wave potential (<i>E</i><sub>1/2</sub>) and limiting current density (<i>J</i><sub>L</sub>). The direct formate fuel cell (DFFC) with an LFe<sub>III</sub>P<sub>10</sub> air cathode achieves a maximum power density of 24.7 mW cm<sup>–2</sup>, 32% higher than that with a Pt/C cathode. This study highlights the critical role of tailoring iron valence states and nitrogen levels to develop high ORR performance, cost-effective Fe–N–C catalysts, providing valuable insights for the future design of non-noble metal catalysts in energy applications.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"23 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Mechanism of Fe–N–C Catalyst Oxygen Reduction Reaction Performance Enhancement: The Impact of Iron Valence State and Nitrogen Content\",\"authors\":\"Yudong Zhang, Yuan He, Jun Li, Yang Xu, Yang Yang, Yao Ge, Xun Zhu, Qiang Liao\",\"doi\":\"10.1021/acsami.4c20112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing non-noble catalysts for the oxygen reduction reaction (ORR) is crucial for advancing energy storage and conversion technologies. This study investigates the influence of iron valence states and nitrogen precursor contents on the physicochemical properties and electrochemical performance of lignin-based Fe–N–C catalysts. Catalysts are synthesized using different valence iron sources and varying pyrrole contents. The results reveal that iron(II) doping increases microporosity and specific surface area, while iron(III) doping enhances mesoporous and iron contents of the carbon materials. XPS and Raman spectroscopy confirm the successful incorporation of Fe–N<sub><i>x</i></sub> active sites in the as-prepared LFe<sub>III</sub>P<sub><i>x</i></sub> catalysts. Electrochemical tests demonstrate that LFe<sub>III</sub>P<sub>10</sub> exhibits the highest ORR activity, surpassing commercial Pt/C in half-wave potential (<i>E</i><sub>1/2</sub>) and limiting current density (<i>J</i><sub>L</sub>). The direct formate fuel cell (DFFC) with an LFe<sub>III</sub>P<sub>10</sub> air cathode achieves a maximum power density of 24.7 mW cm<sup>–2</sup>, 32% higher than that with a Pt/C cathode. This study highlights the critical role of tailoring iron valence states and nitrogen levels to develop high ORR performance, cost-effective Fe–N–C catalysts, providing valuable insights for the future design of non-noble metal catalysts in energy applications.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c20112\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20112","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

优化氧还原反应(ORR)的非贵金属催化剂对推进能量存储和转化技术至关重要。研究了铁价态和氮前驱体含量对木质素基Fe-N-C催化剂理化性能和电化学性能的影响。采用不同价态铁源和不同吡咯含量合成催化剂。结果表明,掺杂铁(II)提高了碳材料的微孔率和比表面积,而掺杂铁(III)提高了碳材料的介孔率和铁含量。XPS和拉曼光谱证实了制备的LFeIIIPx催化剂中Fe-Nx活性位点的成功结合。电化学测试表明,LFeIIIP10表现出最高的ORR活性,在半波电位(E1/2)和极限电流密度(JL)上超过了商用Pt/C。采用LFeIIIP10空气阴极的直接甲酸盐燃料电池(DFFC)的最大功率密度为24.7 mW cm-2,比采用Pt/C阴极的燃料电池高32%。该研究强调了调整铁价态和氮水平对开发高ORR性能、高成本效益的Fe-N-C催化剂的关键作用,为未来设计能源应用中的非贵金属催化剂提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding the Mechanism of Fe–N–C Catalyst Oxygen Reduction Reaction Performance Enhancement: The Impact of Iron Valence State and Nitrogen Content

Understanding the Mechanism of Fe–N–C Catalyst Oxygen Reduction Reaction Performance Enhancement: The Impact of Iron Valence State and Nitrogen Content
Optimizing non-noble catalysts for the oxygen reduction reaction (ORR) is crucial for advancing energy storage and conversion technologies. This study investigates the influence of iron valence states and nitrogen precursor contents on the physicochemical properties and electrochemical performance of lignin-based Fe–N–C catalysts. Catalysts are synthesized using different valence iron sources and varying pyrrole contents. The results reveal that iron(II) doping increases microporosity and specific surface area, while iron(III) doping enhances mesoporous and iron contents of the carbon materials. XPS and Raman spectroscopy confirm the successful incorporation of Fe–Nx active sites in the as-prepared LFeIIIPx catalysts. Electrochemical tests demonstrate that LFeIIIP10 exhibits the highest ORR activity, surpassing commercial Pt/C in half-wave potential (E1/2) and limiting current density (JL). The direct formate fuel cell (DFFC) with an LFeIIIP10 air cathode achieves a maximum power density of 24.7 mW cm–2, 32% higher than that with a Pt/C cathode. This study highlights the critical role of tailoring iron valence states and nitrogen levels to develop high ORR performance, cost-effective Fe–N–C catalysts, providing valuable insights for the future design of non-noble metal catalysts in energy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信