{"title":"钙钛矿微血小板中激子-极化子凝聚产生的角分散矢量涡旋激光","authors":"Shuang Liang, Wangqi Mao, Weihang Zhou, Wei Sun, Yanyan Wu, Wei Xie, Hongxing Xu, Hongxing Dong","doi":"10.1021/acsnano.4c14749","DOIUrl":null,"url":null,"abstract":"Vector vortex beams with space-dependent phase distribution and polarization have been extensively studied for their various applications, such as optical imaging and communication. While conventional vortex beam lasers emit parallel light with phase singularities in real space, we here demonstrate a divergent vortex beam laser whose phase singularities are pinned to the featured azimuthal positions. The coherent beam was generated by the condensation of exciton-polaritons, hybrid quasi-particles from strongly coupled excitons and cavity-confined photons, in a CsPbBr<sub>3</sub> microplatelet. By means of polarization-resolved Michelson interferometry, we observed fork-like patterns that open toward opposite directions in the momentum-space images. FDTD simulations reveal that these patterns stem from the phase vortices of the divergent laser beam. Furthermore, polarization-dependent condensation patterns can be identified clearly through angle-resolved microphotoluminescence spectroscopy, showing the vector beam nature of our vortex lasers. These results demonstrate an approach for generating low-threshold, compact, and scalable single-mode vector vortex beam lasers.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angularly Dispersed Vector Vortex Laser Generated by Exciton-Polariton Condensate in a Perovskite Microplatelet\",\"authors\":\"Shuang Liang, Wangqi Mao, Weihang Zhou, Wei Sun, Yanyan Wu, Wei Xie, Hongxing Xu, Hongxing Dong\",\"doi\":\"10.1021/acsnano.4c14749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector vortex beams with space-dependent phase distribution and polarization have been extensively studied for their various applications, such as optical imaging and communication. While conventional vortex beam lasers emit parallel light with phase singularities in real space, we here demonstrate a divergent vortex beam laser whose phase singularities are pinned to the featured azimuthal positions. The coherent beam was generated by the condensation of exciton-polaritons, hybrid quasi-particles from strongly coupled excitons and cavity-confined photons, in a CsPbBr<sub>3</sub> microplatelet. By means of polarization-resolved Michelson interferometry, we observed fork-like patterns that open toward opposite directions in the momentum-space images. FDTD simulations reveal that these patterns stem from the phase vortices of the divergent laser beam. Furthermore, polarization-dependent condensation patterns can be identified clearly through angle-resolved microphotoluminescence spectroscopy, showing the vector beam nature of our vortex lasers. These results demonstrate an approach for generating low-threshold, compact, and scalable single-mode vector vortex beam lasers.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c14749\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14749","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Angularly Dispersed Vector Vortex Laser Generated by Exciton-Polariton Condensate in a Perovskite Microplatelet
Vector vortex beams with space-dependent phase distribution and polarization have been extensively studied for their various applications, such as optical imaging and communication. While conventional vortex beam lasers emit parallel light with phase singularities in real space, we here demonstrate a divergent vortex beam laser whose phase singularities are pinned to the featured azimuthal positions. The coherent beam was generated by the condensation of exciton-polaritons, hybrid quasi-particles from strongly coupled excitons and cavity-confined photons, in a CsPbBr3 microplatelet. By means of polarization-resolved Michelson interferometry, we observed fork-like patterns that open toward opposite directions in the momentum-space images. FDTD simulations reveal that these patterns stem from the phase vortices of the divergent laser beam. Furthermore, polarization-dependent condensation patterns can be identified clearly through angle-resolved microphotoluminescence spectroscopy, showing the vector beam nature of our vortex lasers. These results demonstrate an approach for generating low-threshold, compact, and scalable single-mode vector vortex beam lasers.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.