Wanqi Zhang, Yan Li, Xiangfei Song, He Yang, Zihu Kang, Yue Zheng, Xia Tao
{"title":"高效稳定钙钛矿太阳能电池的3,5-双(三氟甲基)苯乙醇内封装","authors":"Wanqi Zhang, Yan Li, Xiangfei Song, He Yang, Zihu Kang, Yue Zheng, Xia Tao","doi":"10.1021/acsami.5c00846","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) have made significant progress in efficiency, but their long-term operational stability remains an important yet challenging issue. Here, a dual-site passivation coupling internal encapsulation strategy is developed by introducing 3,5-bis(trifluoromethyl)-benzenethiol (35BBT) at the perovskite (PVK)/hole transport layer (HTL) interface. 35BBT provides dual active sites containing sulfur (S) atoms and fluorine (F) atoms, where the S atoms in the sulfhydryl group and the F atoms in the trifluoromethyl group coordinate with unpaired Pb<sup>2+</sup> to form coordinate bonds, meanwhile the F atoms in the trifluoromethyl group form hydrogen bonds with organic cations. This dual-site passivation mitigates deep and shallow defects at the PVK/HTL interface. Notably, 35BBT, with hydrophobic trifluoromethyl and benzene rings covering the perovskite layer, enables internal encapsulation to protect the perovskite films from water and oxygen invasion. Consequently, the Ag-based device with 35BBT treatment achieves an efficiency enhancement from 22.03% to 23.86%, retaining 89.1% of its initial efficiency even after 2000 h of air exposure. This fabricated device also exhibits long-term thermal stability at 60 °C. This study offers an avenue for simultaneously passivating deep and shallow defects at the PVK/HTL interface and inhibiting water/oxygen erosion, thereby enabling the fabrication of efficient and stable PSCs for future commercial applications.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"32 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Site Passivation Coupling Internal Encapsulation via 3,5-Bis(trifluoromethyl)benzenethiol for Efficient and Stable Perovskite Solar Cells\",\"authors\":\"Wanqi Zhang, Yan Li, Xiangfei Song, He Yang, Zihu Kang, Yue Zheng, Xia Tao\",\"doi\":\"10.1021/acsami.5c00846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite solar cells (PSCs) have made significant progress in efficiency, but their long-term operational stability remains an important yet challenging issue. Here, a dual-site passivation coupling internal encapsulation strategy is developed by introducing 3,5-bis(trifluoromethyl)-benzenethiol (35BBT) at the perovskite (PVK)/hole transport layer (HTL) interface. 35BBT provides dual active sites containing sulfur (S) atoms and fluorine (F) atoms, where the S atoms in the sulfhydryl group and the F atoms in the trifluoromethyl group coordinate with unpaired Pb<sup>2+</sup> to form coordinate bonds, meanwhile the F atoms in the trifluoromethyl group form hydrogen bonds with organic cations. This dual-site passivation mitigates deep and shallow defects at the PVK/HTL interface. Notably, 35BBT, with hydrophobic trifluoromethyl and benzene rings covering the perovskite layer, enables internal encapsulation to protect the perovskite films from water and oxygen invasion. Consequently, the Ag-based device with 35BBT treatment achieves an efficiency enhancement from 22.03% to 23.86%, retaining 89.1% of its initial efficiency even after 2000 h of air exposure. This fabricated device also exhibits long-term thermal stability at 60 °C. This study offers an avenue for simultaneously passivating deep and shallow defects at the PVK/HTL interface and inhibiting water/oxygen erosion, thereby enabling the fabrication of efficient and stable PSCs for future commercial applications.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c00846\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c00846","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual-Site Passivation Coupling Internal Encapsulation via 3,5-Bis(trifluoromethyl)benzenethiol for Efficient and Stable Perovskite Solar Cells
Perovskite solar cells (PSCs) have made significant progress in efficiency, but their long-term operational stability remains an important yet challenging issue. Here, a dual-site passivation coupling internal encapsulation strategy is developed by introducing 3,5-bis(trifluoromethyl)-benzenethiol (35BBT) at the perovskite (PVK)/hole transport layer (HTL) interface. 35BBT provides dual active sites containing sulfur (S) atoms and fluorine (F) atoms, where the S atoms in the sulfhydryl group and the F atoms in the trifluoromethyl group coordinate with unpaired Pb2+ to form coordinate bonds, meanwhile the F atoms in the trifluoromethyl group form hydrogen bonds with organic cations. This dual-site passivation mitigates deep and shallow defects at the PVK/HTL interface. Notably, 35BBT, with hydrophobic trifluoromethyl and benzene rings covering the perovskite layer, enables internal encapsulation to protect the perovskite films from water and oxygen invasion. Consequently, the Ag-based device with 35BBT treatment achieves an efficiency enhancement from 22.03% to 23.86%, retaining 89.1% of its initial efficiency even after 2000 h of air exposure. This fabricated device also exhibits long-term thermal stability at 60 °C. This study offers an avenue for simultaneously passivating deep and shallow defects at the PVK/HTL interface and inhibiting water/oxygen erosion, thereby enabling the fabrication of efficient and stable PSCs for future commercial applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.