宇宙中微子背景、轴子、暗物质和反应堆中微子的超辐射相互作用

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Asimina Arvanitaki, Savas Dimopoulos, Marios Galanis
{"title":"宇宙中微子背景、轴子、暗物质和反应堆中微子的超辐射相互作用","authors":"Asimina Arvanitaki, Savas Dimopoulos, Marios Galanis","doi":"10.1103/physrevd.111.055015","DOIUrl":null,"url":null,"abstract":"In this paper, we do three things. First, we outline the conditions under which the interaction rate of processes that change the internal state of a system of N</a:mi></a:math> targets scales as <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msup><c:mi>N</c:mi><c:mn>2</c:mn></c:msup></c:math>. This is an effect distinct from coherent scattering but with the same scaling. Second, we compute example rates for such processes for various weakly interacting particles. Finally, we point to potential quantum observables for these processes that go beyond traditional energy exchange. Maximal coherence in inelastic processes is achieved when the targets are placed in an equal superposition of the ground and excited states. These coherent inelastic processes are analogous to Dicke superradiance, where cooperative effects reinforce the emission of radiation from matter, and we thus refer to them as interactions. We compute the superradiant interaction rates for the cosmic neutrino background (<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mi mathvariant=\"normal\">C</e:mi><e:mi>ν</e:mi><e:mi mathvariant=\"normal\">B</e:mi></e:mrow></e:math>), dark matter scattering and absorption, and late-universe particles, such as reactor neutrinos, when the two-level system is realized by nuclear or electron spins in a magnetic field. The rates we find can be quite sizable on macroscopic yet small targets. For example, the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mi mathvariant=\"normal\">C</i:mi><i:mi>ν</i:mi><i:mi mathvariant=\"normal\">B</i:mi></i:mrow></i:math> interacts with a rate of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi mathvariant=\"script\">O</m:mi><m:mo stretchy=\"false\">(</m:mo><m:mi>Hz</m:mi><m:mo stretchy=\"false\">)</m:mo></m:math> when scattering off a 10 cm liquid or solid-state density spin-polarized sphere, a <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mrow><r:mi mathvariant=\"script\">O</r:mi><r:mo stretchy=\"false\">(</r:mo><r:msup><r:mrow><r:mn>10</r:mn></r:mrow><r:mrow><r:mn>21</r:mn></r:mrow></r:msup><r:mo stretchy=\"false\">)</r:mo></r:mrow></r:math> enhancement compared to the incoherent inelastic contribution. For QCD axion dark matter, similar rates can be achieved with much smaller samples, <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mrow><w:mi>N</w:mi><w:mo>∼</w:mo><w:mi mathvariant=\"script\">O</w:mi><w:mo stretchy=\"false\">(</w:mo><w:msup><w:mrow><w:mn>10</w:mn></w:mrow><w:mrow><w:mn>15</w:mn></w:mrow></w:msup><w:mo stretchy=\"false\">)</w:mo><w:msup><w:mrow><w:mo stretchy=\"false\">(</w:mo><w:mfrac><w:mrow><w:mi>m</w:mi></w:mrow><w:mrow><w:mn>2</w:mn><w:mo stretchy=\"false\">×</w:mo><w:msup><w:mrow><w:mn>10</w:mn></w:mrow><w:mrow><w:mo stretchy=\"false\">−</w:mo><w:mn>8</w:mn></w:mrow></w:msup><w:mtext> </w:mtext><w:mtext> </w:mtext><w:mi>eV</w:mi></w:mrow></w:mfrac><w:mo stretchy=\"false\">)</w:mo></w:mrow><w:mrow><w:mo>−</w:mo><w:mn>1</w:mn><w:mo>/</w:mo><w:mn>2</w:mn></w:mrow></w:msup></w:mrow></w:math>, where <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:mi>m</fb:mi></fb:math> is the axion mass. Using the Lindblad formalism for open quantum systems, we show that these superradiant interactions can manifest as a source of noise on the system. This noise is tunable however and can serve as a signature of new physics, as the energy splitting controls the momentum transfer and hence, the amount of macroscopic coherence. These considerations point to new observables that go beyond traditional net energy exchange. These observables are sensitive to the of the excitation and deexcitation rates—instead of the net energy exchange rate which can be very suppressed—and can be viewed as introducing diffusion and decoherence to the system. While we postpone to upcoming work proposing a concrete protocol that extracts these effects from a macroscopic ensemble of atoms, the effects presented in this paper may point to a new class of ultra-low threshold detectors. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"18 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superradiant interactions of the cosmic neutrino background, axions, dark matter, and reactor neutrinos\",\"authors\":\"Asimina Arvanitaki, Savas Dimopoulos, Marios Galanis\",\"doi\":\"10.1103/physrevd.111.055015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we do three things. First, we outline the conditions under which the interaction rate of processes that change the internal state of a system of N</a:mi></a:math> targets scales as <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msup><c:mi>N</c:mi><c:mn>2</c:mn></c:msup></c:math>. This is an effect distinct from coherent scattering but with the same scaling. Second, we compute example rates for such processes for various weakly interacting particles. Finally, we point to potential quantum observables for these processes that go beyond traditional energy exchange. Maximal coherence in inelastic processes is achieved when the targets are placed in an equal superposition of the ground and excited states. These coherent inelastic processes are analogous to Dicke superradiance, where cooperative effects reinforce the emission of radiation from matter, and we thus refer to them as interactions. We compute the superradiant interaction rates for the cosmic neutrino background (<e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:mi mathvariant=\\\"normal\\\">C</e:mi><e:mi>ν</e:mi><e:mi mathvariant=\\\"normal\\\">B</e:mi></e:mrow></e:math>), dark matter scattering and absorption, and late-universe particles, such as reactor neutrinos, when the two-level system is realized by nuclear or electron spins in a magnetic field. The rates we find can be quite sizable on macroscopic yet small targets. For example, the <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mrow><i:mi mathvariant=\\\"normal\\\">C</i:mi><i:mi>ν</i:mi><i:mi mathvariant=\\\"normal\\\">B</i:mi></i:mrow></i:math> interacts with a rate of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi mathvariant=\\\"script\\\">O</m:mi><m:mo stretchy=\\\"false\\\">(</m:mo><m:mi>Hz</m:mi><m:mo stretchy=\\\"false\\\">)</m:mo></m:math> when scattering off a 10 cm liquid or solid-state density spin-polarized sphere, a <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><r:mrow><r:mi mathvariant=\\\"script\\\">O</r:mi><r:mo stretchy=\\\"false\\\">(</r:mo><r:msup><r:mrow><r:mn>10</r:mn></r:mrow><r:mrow><r:mn>21</r:mn></r:mrow></r:msup><r:mo stretchy=\\\"false\\\">)</r:mo></r:mrow></r:math> enhancement compared to the incoherent inelastic contribution. For QCD axion dark matter, similar rates can be achieved with much smaller samples, <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:mrow><w:mi>N</w:mi><w:mo>∼</w:mo><w:mi mathvariant=\\\"script\\\">O</w:mi><w:mo stretchy=\\\"false\\\">(</w:mo><w:msup><w:mrow><w:mn>10</w:mn></w:mrow><w:mrow><w:mn>15</w:mn></w:mrow></w:msup><w:mo stretchy=\\\"false\\\">)</w:mo><w:msup><w:mrow><w:mo stretchy=\\\"false\\\">(</w:mo><w:mfrac><w:mrow><w:mi>m</w:mi></w:mrow><w:mrow><w:mn>2</w:mn><w:mo stretchy=\\\"false\\\">×</w:mo><w:msup><w:mrow><w:mn>10</w:mn></w:mrow><w:mrow><w:mo stretchy=\\\"false\\\">−</w:mo><w:mn>8</w:mn></w:mrow></w:msup><w:mtext> </w:mtext><w:mtext> </w:mtext><w:mi>eV</w:mi></w:mrow></w:mfrac><w:mo stretchy=\\\"false\\\">)</w:mo></w:mrow><w:mrow><w:mo>−</w:mo><w:mn>1</w:mn><w:mo>/</w:mo><w:mn>2</w:mn></w:mrow></w:msup></w:mrow></w:math>, where <fb:math xmlns:fb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><fb:mi>m</fb:mi></fb:math> is the axion mass. Using the Lindblad formalism for open quantum systems, we show that these superradiant interactions can manifest as a source of noise on the system. This noise is tunable however and can serve as a signature of new physics, as the energy splitting controls the momentum transfer and hence, the amount of macroscopic coherence. These considerations point to new observables that go beyond traditional net energy exchange. These observables are sensitive to the of the excitation and deexcitation rates—instead of the net energy exchange rate which can be very suppressed—and can be viewed as introducing diffusion and decoherence to the system. While we postpone to upcoming work proposing a concrete protocol that extracts these effects from a macroscopic ensemble of atoms, the effects presented in this paper may point to a new class of ultra-low threshold detectors. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.055015\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.055015","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们做了三件事。首先,我们概述了改变N个目标系统内部状态的过程的相互作用速率为N2的条件。这是一种不同于相干散射的效应,但具有相同的标度。其次,我们计算了各种弱相互作用粒子的例子速率。最后,我们指出了超越传统能量交换的这些过程的潜在量子可观测值。在非弹性过程中,当目标被置于基态和激发态的相等叠加中时,可以实现最大的相干性。这些相干非弹性过程类似于迪克超辐射,其中合作效应加强了物质的辐射发射,因此我们将其称为相互作用。我们计算了宇宙中微子背景(CνB)、暗物质散射和吸收以及晚期宇宙粒子(如反应堆中微子)在磁场中通过核或电子自旋实现两能级系统时的超辐射相互作用速率。我们发现的速率在宏观但很小的目标上是相当可观的。例如,当CνB散射到10cm的液体或固体密度自旋极化球时,其相互作用速率为0 (Hz),与非相干非弹性贡献相比,增强了0(1021)。对于QCD轴子暗物质,类似的速率可以用更小的样品,N ~ O(1015)(m2×10−8 eV)−1/2,其中m是轴子质量。利用开放量子系统的Lindblad形式,我们证明了这些超辐射相互作用可以表现为系统上的噪声源。然而,这种噪声是可调的,可以作为新物理学的标志,因为能量分裂控制着动量转移,因此,宏观相干的数量。这些考虑指向了超越传统净能量交换的新观测值。这些观测值对激发态和去激发态速率的变化很敏感,而不是可以被抑制的净能量交换速率,并且可以看作是向系统引入了扩散和退相干。虽然我们推迟了即将到来的工作,提出了一个具体的方案,从宏观的原子集合中提取这些效应,但本文中提出的效应可能指向一类新的超低阈值探测器。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superradiant interactions of the cosmic neutrino background, axions, dark matter, and reactor neutrinos
In this paper, we do three things. First, we outline the conditions under which the interaction rate of processes that change the internal state of a system of N targets scales as N2. This is an effect distinct from coherent scattering but with the same scaling. Second, we compute example rates for such processes for various weakly interacting particles. Finally, we point to potential quantum observables for these processes that go beyond traditional energy exchange. Maximal coherence in inelastic processes is achieved when the targets are placed in an equal superposition of the ground and excited states. These coherent inelastic processes are analogous to Dicke superradiance, where cooperative effects reinforce the emission of radiation from matter, and we thus refer to them as interactions. We compute the superradiant interaction rates for the cosmic neutrino background (CνB), dark matter scattering and absorption, and late-universe particles, such as reactor neutrinos, when the two-level system is realized by nuclear or electron spins in a magnetic field. The rates we find can be quite sizable on macroscopic yet small targets. For example, the CνB interacts with a rate of O(Hz) when scattering off a 10 cm liquid or solid-state density spin-polarized sphere, a O(1021) enhancement compared to the incoherent inelastic contribution. For QCD axion dark matter, similar rates can be achieved with much smaller samples, NO(1015)(m2×108 eV)1/2, where m is the axion mass. Using the Lindblad formalism for open quantum systems, we show that these superradiant interactions can manifest as a source of noise on the system. This noise is tunable however and can serve as a signature of new physics, as the energy splitting controls the momentum transfer and hence, the amount of macroscopic coherence. These considerations point to new observables that go beyond traditional net energy exchange. These observables are sensitive to the of the excitation and deexcitation rates—instead of the net energy exchange rate which can be very suppressed—and can be viewed as introducing diffusion and decoherence to the system. While we postpone to upcoming work proposing a concrete protocol that extracts these effects from a macroscopic ensemble of atoms, the effects presented in this paper may point to a new class of ultra-low threshold detectors. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信