环境压力下光热甲烷在气固界面直接转化为甲醛

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuxiong Wang, Yaoyu Zhang, Xiaoqiang Wang, Yue Liu, Zhongbiao Wu
{"title":"环境压力下光热甲烷在气固界面直接转化为甲醛","authors":"Yuxiong Wang, Yaoyu Zhang, Xiaoqiang Wang, Yue Liu, Zhongbiao Wu","doi":"10.1038/s41467-025-57854-y","DOIUrl":null,"url":null,"abstract":"<p>Photocatalytic direct oxidation of methane to C<sub>1</sub> oxygenates offers a green alternative to conventional energy-intensive and high-carbon-footprint multi-step processes. However, current batch-type gas–liquid–solid reaction systems under high-pressure conditions face critical challenges in real-time product separation and concentration for industrial implementation. Here, we demonstrate a continuous-flow gas<b>–</b>solid photothermal catalytic route for methane conversion to formaldehyde under ambient pressure, where the generated gas-phase formaldehyde can be easily collected by water absorption. The Ag single-atom modified ZnO photocatalyst achieves a formaldehyde production rate of 117.8 ± 1.7 μmol h<sup>−1</sup> with 71.2 ± 0.8% selectivity. Meanwhile, a highly concentrated formaldehyde solution (514.2 ± 33.7 µmol mL<sup>−1</sup>, 1.54 ± 0.10 wt.%) is obtained through 12-hour water absorption, effectively overcoming the product enrichment barrier that plagues conventional batch reaction route. This study establishes a robust technological foundation for sustainable industrial-scale conversion of methane to value-added chemicals.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"204 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photothermal direct methane conversion to formaldehyde at the gas-solid interface under ambient pressure\",\"authors\":\"Yuxiong Wang, Yaoyu Zhang, Xiaoqiang Wang, Yue Liu, Zhongbiao Wu\",\"doi\":\"10.1038/s41467-025-57854-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photocatalytic direct oxidation of methane to C<sub>1</sub> oxygenates offers a green alternative to conventional energy-intensive and high-carbon-footprint multi-step processes. However, current batch-type gas–liquid–solid reaction systems under high-pressure conditions face critical challenges in real-time product separation and concentration for industrial implementation. Here, we demonstrate a continuous-flow gas<b>–</b>solid photothermal catalytic route for methane conversion to formaldehyde under ambient pressure, where the generated gas-phase formaldehyde can be easily collected by water absorption. The Ag single-atom modified ZnO photocatalyst achieves a formaldehyde production rate of 117.8 ± 1.7 μmol h<sup>−1</sup> with 71.2 ± 0.8% selectivity. Meanwhile, a highly concentrated formaldehyde solution (514.2 ± 33.7 µmol mL<sup>−1</sup>, 1.54 ± 0.10 wt.%) is obtained through 12-hour water absorption, effectively overcoming the product enrichment barrier that plagues conventional batch reaction route. This study establishes a robust technological foundation for sustainable industrial-scale conversion of methane to value-added chemicals.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"204 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57854-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57854-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光催化甲烷直接氧化生成C1氧合物为传统的能源密集型和高碳足迹多步骤工艺提供了一种绿色替代方案。然而,目前高压条件下间歇式气液固反应系统在工业实施的实时产物分离和浓缩方面面临着严峻的挑战。在这里,我们展示了一种连续流气固光热催化途径,在常压下甲烷转化为甲醛,其中产生的气相甲醛可以很容易地被吸水收集。Ag单原子修饰ZnO光催化剂的甲醛产率为117.8±1.7 μmol h−1,选择性为71.2±0.8%。同时,通过12小时的吸水,得到了高浓度的甲醛溶液(514.2±33.7µmol mL−1,1.54±0.10 wt.%),有效地克服了传统间歇反应途径存在的产物富集障碍。本研究为可持续的工业规模甲烷转化为增值化学品建立了坚实的技术基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photothermal direct methane conversion to formaldehyde at the gas-solid interface under ambient pressure

Photothermal direct methane conversion to formaldehyde at the gas-solid interface under ambient pressure

Photocatalytic direct oxidation of methane to C1 oxygenates offers a green alternative to conventional energy-intensive and high-carbon-footprint multi-step processes. However, current batch-type gas–liquid–solid reaction systems under high-pressure conditions face critical challenges in real-time product separation and concentration for industrial implementation. Here, we demonstrate a continuous-flow gassolid photothermal catalytic route for methane conversion to formaldehyde under ambient pressure, where the generated gas-phase formaldehyde can be easily collected by water absorption. The Ag single-atom modified ZnO photocatalyst achieves a formaldehyde production rate of 117.8 ± 1.7 μmol h−1 with 71.2 ± 0.8% selectivity. Meanwhile, a highly concentrated formaldehyde solution (514.2 ± 33.7 µmol mL−1, 1.54 ± 0.10 wt.%) is obtained through 12-hour water absorption, effectively overcoming the product enrichment barrier that plagues conventional batch reaction route. This study establishes a robust technological foundation for sustainable industrial-scale conversion of methane to value-added chemicals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信