凝胶和组织中单细胞基于图的三维空间基因邻域网络。

IF 5 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2025-03-13 eCollection Date: 2025-01-01 DOI:10.34133/bmef.0110
Zhou Fang, Kelsey Krusen, Hannah Priest, Mingshuang Wang, Sungwoong Kim, Anirudh Sriram, Ashritha Yellanki, Ankur Singh, Edwin Horwitz, Ahmet F Coskun
{"title":"凝胶和组织中单细胞基于图的三维空间基因邻域网络。","authors":"Zhou Fang, Kelsey Krusen, Hannah Priest, Mingshuang Wang, Sungwoong Kim, Anirudh Sriram, Ashritha Yellanki, Ankur Singh, Edwin Horwitz, Ahmet F Coskun","doi":"10.34133/bmef.0110","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> We developed 3-dimensional spatially resolved gene neighborhood network embedding (3D-spaGNN-E) to find subcellular gene proximity relationships and identify key subcellular motifs in cell-cell communication (CCC). <b>Impact Statement:</b> The pipeline combines 3D imaging-based spatial transcriptomics and graph-based deep learning to identify subcellular motifs. <b>Introduction:</b> Advancements in imaging and experimental technology allow the study of 3D spatially resolved transcriptomics and capture better spatial context than approximating the samples as 2D. However, the third spatial dimension increases the data complexity and requires new analyses. <b>Methods:</b> 3D-spaGNN-E detects single transcripts in 3D cell culture samples and identifies subcellular gene proximity relationships. Then, a graph autoencoder projects the gene proximity relationships into a latent space. We then applied explainability analysis to identify subcellular CCC motifs. <b>Results:</b> We first applied the pipeline to mesenchymal stem cells (MSCs) cultured in hydrogel. After clustering the cells based on the RNA count, we identified cells belonging to the same cluster as homotypic and those belonging to different clusters as heterotypic. We identified changes in local gene proximity near the border between homotypic and heterotypic cells. When applying the pipeline to the MSC-peripheral blood mononuclear cell (PBMC) coculture system, we identified CD4<sup>+</sup> and CD8<sup>+</sup> T cells. Local gene proximity and autoencoder embedding changes can distinguish strong and weak suppression of different immune cells. Lastly, we compared astrocyte-neuron CCC in mouse hypothalamus and cortex by analyzing 3D multiplexed-error-robust fluorescence in situ hybridization (MERFISH) data and identified regional gene proximity differences. <b>Conclusion:</b> 3D-spaGNN-E distinguished distinct CCCs in cell culture and tissue by examining subcellular motifs.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0110"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906096/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graph-Based 3-Dimensional Spatial Gene Neighborhood Networks of Single Cells in Gels and Tissues.\",\"authors\":\"Zhou Fang, Kelsey Krusen, Hannah Priest, Mingshuang Wang, Sungwoong Kim, Anirudh Sriram, Ashritha Yellanki, Ankur Singh, Edwin Horwitz, Ahmet F Coskun\",\"doi\":\"10.34133/bmef.0110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> We developed 3-dimensional spatially resolved gene neighborhood network embedding (3D-spaGNN-E) to find subcellular gene proximity relationships and identify key subcellular motifs in cell-cell communication (CCC). <b>Impact Statement:</b> The pipeline combines 3D imaging-based spatial transcriptomics and graph-based deep learning to identify subcellular motifs. <b>Introduction:</b> Advancements in imaging and experimental technology allow the study of 3D spatially resolved transcriptomics and capture better spatial context than approximating the samples as 2D. However, the third spatial dimension increases the data complexity and requires new analyses. <b>Methods:</b> 3D-spaGNN-E detects single transcripts in 3D cell culture samples and identifies subcellular gene proximity relationships. Then, a graph autoencoder projects the gene proximity relationships into a latent space. We then applied explainability analysis to identify subcellular CCC motifs. <b>Results:</b> We first applied the pipeline to mesenchymal stem cells (MSCs) cultured in hydrogel. After clustering the cells based on the RNA count, we identified cells belonging to the same cluster as homotypic and those belonging to different clusters as heterotypic. We identified changes in local gene proximity near the border between homotypic and heterotypic cells. When applying the pipeline to the MSC-peripheral blood mononuclear cell (PBMC) coculture system, we identified CD4<sup>+</sup> and CD8<sup>+</sup> T cells. Local gene proximity and autoencoder embedding changes can distinguish strong and weak suppression of different immune cells. Lastly, we compared astrocyte-neuron CCC in mouse hypothalamus and cortex by analyzing 3D multiplexed-error-robust fluorescence in situ hybridization (MERFISH) data and identified regional gene proximity differences. <b>Conclusion:</b> 3D-spaGNN-E distinguished distinct CCCs in cell culture and tissue by examining subcellular motifs.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":\"6 \",\"pages\":\"0110\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906096/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmef.0110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmef.0110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:建立三维空间分辨基因邻域网络嵌入(3D-spaGNN-E),寻找细胞-细胞通讯(CCC)中亚细胞基因的接近关系,并鉴定关键的亚细胞基序。影响声明:该管道结合了基于3D成像的空间转录组学和基于图形的深度学习来识别亚细胞基序。成像和实验技术的进步使得3D空间分辨率转录组学的研究和捕获更好的空间背景,而不是将样本近似为2D。然而,第三空间维度增加了数据的复杂性,需要进行新的分析。方法:3D- spagnn - e检测三维细胞培养样品中的单转录本,并鉴定亚细胞基因接近关系。然后,图形自编码器将基因接近关系投影到潜在空间中。然后,我们应用可解释性分析来识别亚细胞CCC基序。结果:我们首次将管道应用于水凝胶培养的间充质干细胞(MSCs)。根据RNA计数对细胞进行聚类后,我们将属于同一簇的细胞鉴定为同型,将属于不同簇的细胞鉴定为异型。我们发现了在同型和异型细胞边界附近的局部基因接近性的变化。当将该管道应用于骨髓间充质干细胞-外周血单核细胞(PBMC)共培养系统时,我们鉴定出CD4+和CD8+ T细胞。局部基因接近和自编码器嵌入变化可以区分不同免疫细胞抑制的强弱。最后,通过分析三维多路误差鲁棒荧光原位杂交(MERFISH)数据,我们比较了小鼠下丘脑和皮层的星形胶质细胞-神经元CCC,并确定了区域基因接近性差异。结论:3D-spaGNN-E通过检测亚细胞基序区分细胞培养和组织中不同的CCCs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-Based 3-Dimensional Spatial Gene Neighborhood Networks of Single Cells in Gels and Tissues.

Objective: We developed 3-dimensional spatially resolved gene neighborhood network embedding (3D-spaGNN-E) to find subcellular gene proximity relationships and identify key subcellular motifs in cell-cell communication (CCC). Impact Statement: The pipeline combines 3D imaging-based spatial transcriptomics and graph-based deep learning to identify subcellular motifs. Introduction: Advancements in imaging and experimental technology allow the study of 3D spatially resolved transcriptomics and capture better spatial context than approximating the samples as 2D. However, the third spatial dimension increases the data complexity and requires new analyses. Methods: 3D-spaGNN-E detects single transcripts in 3D cell culture samples and identifies subcellular gene proximity relationships. Then, a graph autoencoder projects the gene proximity relationships into a latent space. We then applied explainability analysis to identify subcellular CCC motifs. Results: We first applied the pipeline to mesenchymal stem cells (MSCs) cultured in hydrogel. After clustering the cells based on the RNA count, we identified cells belonging to the same cluster as homotypic and those belonging to different clusters as heterotypic. We identified changes in local gene proximity near the border between homotypic and heterotypic cells. When applying the pipeline to the MSC-peripheral blood mononuclear cell (PBMC) coculture system, we identified CD4+ and CD8+ T cells. Local gene proximity and autoencoder embedding changes can distinguish strong and weak suppression of different immune cells. Lastly, we compared astrocyte-neuron CCC in mouse hypothalamus and cortex by analyzing 3D multiplexed-error-robust fluorescence in situ hybridization (MERFISH) data and identified regional gene proximity differences. Conclusion: 3D-spaGNN-E distinguished distinct CCCs in cell culture and tissue by examining subcellular motifs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信