Basel A Khader, Christian Volpe, Stephen D Waldman, Dae Kun Hwang
{"title":"高弹性生物活性 bR-GelMA 微颗粒:通过停流光刻技术合成和精确微制造。","authors":"Basel A Khader, Christian Volpe, Stephen D Waldman, Dae Kun Hwang","doi":"10.1088/1748-605X/adc059","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis poses a significant public health challenge, necessitating advanced bone regeneration solutions. While gelatin methacrylate (GelMA) hydrogels show promise, conventional fabrication methods using aqueous two-phase systems (ATPS) often result in inconsistent mechanical properties and structural irregularities. This study presents an approach synthesizing new methods and parameters for bR-GelMA, utilizing stop-flow lithography (SFL) to fabricate highly elastic micro-particles incorporating bioactive glass particles. SFL, in contrast to ATPS, offers precise control over micro-particle formation, enabling the production of uniform and stable structures ideal for biomedical applications. The resulting elastic micro-particles demonstrate rapid degradation, enhanced cell proliferation, and improved mechanical strength without compromising flexibility. This innovative approach using SFL to fabricate GelMA-based micro-particles holds significant promise for bone regeneration and other critical therapeutic applications.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly elastic bioactive bR-GelMA micro-particles: synthesis and precise micro-fabrication via stop-flow lithography.\",\"authors\":\"Basel A Khader, Christian Volpe, Stephen D Waldman, Dae Kun Hwang\",\"doi\":\"10.1088/1748-605X/adc059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoporosis poses a significant public health challenge, necessitating advanced bone regeneration solutions. While gelatin methacrylate (GelMA) hydrogels show promise, conventional fabrication methods using aqueous two-phase systems (ATPS) often result in inconsistent mechanical properties and structural irregularities. This study presents an approach synthesizing new methods and parameters for bR-GelMA, utilizing stop-flow lithography (SFL) to fabricate highly elastic micro-particles incorporating bioactive glass particles. SFL, in contrast to ATPS, offers precise control over micro-particle formation, enabling the production of uniform and stable structures ideal for biomedical applications. The resulting elastic micro-particles demonstrate rapid degradation, enhanced cell proliferation, and improved mechanical strength without compromising flexibility. This innovative approach using SFL to fabricate GelMA-based micro-particles holds significant promise for bone regeneration and other critical therapeutic applications.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/adc059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adc059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Highly elastic bioactive bR-GelMA micro-particles: synthesis and precise micro-fabrication via stop-flow lithography.
Osteoporosis poses a significant public health challenge, necessitating advanced bone regeneration solutions. While gelatin methacrylate (GelMA) hydrogels show promise, conventional fabrication methods using aqueous two-phase systems (ATPS) often result in inconsistent mechanical properties and structural irregularities. This study presents an approach synthesizing new methods and parameters for bR-GelMA, utilizing stop-flow lithography (SFL) to fabricate highly elastic micro-particles incorporating bioactive glass particles. SFL, in contrast to ATPS, offers precise control over micro-particle formation, enabling the production of uniform and stable structures ideal for biomedical applications. The resulting elastic micro-particles demonstrate rapid degradation, enhanced cell proliferation, and improved mechanical strength without compromising flexibility. This innovative approach using SFL to fabricate GelMA-based micro-particles holds significant promise for bone regeneration and other critical therapeutic applications.