绿色荧光蛋白在同种和异种植物移植中的易位。

IF 1.4 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Takumi Ogawa, Kanae Kato, Harue Asuka, Yumi Sugioka, Tomofumi Mochizuki, Hirokazu Fukuda, Takumi Nishiuchi, Taira Miyahara, Hiroaki Kodama, Daisaku Ohta
{"title":"绿色荧光蛋白在同种和异种植物移植中的易位。","authors":"Takumi Ogawa, Kanae Kato, Harue Asuka, Yumi Sugioka, Tomofumi Mochizuki, Hirokazu Fukuda, Takumi Nishiuchi, Taira Miyahara, Hiroaki Kodama, Daisaku Ohta","doi":"10.5511/plantbiotechnology.24.0501b","DOIUrl":null,"url":null,"abstract":"<p><p>Transgrafting, a technique involving the use of genetically modified (GM) plants as grafting partners with non-genetically modified (non-GM) crops, presents non-GM edible harvests from transgrafted crops, often considered as non-GM products. However, the classification of the non-GM portions from transgrafted crops as non-GM foods remains uncertain, therefore it is critical to investigate the potential translocation of substances from GM portions to non-GM edible portions in transgrafted plants. In this study, we explored the translocation of exogenous proteins (luciferase and green fluorescent protein) in model transgrafted plants consisting of GM plant rootstocks and non-GM tomato scions. Our results suggest that exogenous proteins accumulated in the stem tissues of non-GM tomato scions in all cases investigated. The levels and patterns of exogenous protein accumulation in the non-GM tomato stem tissues varied among the individual transgrafted plants and rootstock plant species used. However, exogenous proteins were not detected in the fruits, the edible part of the tomato, and in mature leaves in non-GM tomato scions under the current experimental conditions. Our results provide basic knowledge for understanding exogenous protein translocation in transgrafted plants.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 4","pages":"345-356"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897739/pdf/","citationCount":"0","resultStr":"{\"title\":\"Translocation of green fluorescent protein in homo- and hetero-transgrafted plants.\",\"authors\":\"Takumi Ogawa, Kanae Kato, Harue Asuka, Yumi Sugioka, Tomofumi Mochizuki, Hirokazu Fukuda, Takumi Nishiuchi, Taira Miyahara, Hiroaki Kodama, Daisaku Ohta\",\"doi\":\"10.5511/plantbiotechnology.24.0501b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transgrafting, a technique involving the use of genetically modified (GM) plants as grafting partners with non-genetically modified (non-GM) crops, presents non-GM edible harvests from transgrafted crops, often considered as non-GM products. However, the classification of the non-GM portions from transgrafted crops as non-GM foods remains uncertain, therefore it is critical to investigate the potential translocation of substances from GM portions to non-GM edible portions in transgrafted plants. In this study, we explored the translocation of exogenous proteins (luciferase and green fluorescent protein) in model transgrafted plants consisting of GM plant rootstocks and non-GM tomato scions. Our results suggest that exogenous proteins accumulated in the stem tissues of non-GM tomato scions in all cases investigated. The levels and patterns of exogenous protein accumulation in the non-GM tomato stem tissues varied among the individual transgrafted plants and rootstock plant species used. However, exogenous proteins were not detected in the fruits, the edible part of the tomato, and in mature leaves in non-GM tomato scions under the current experimental conditions. Our results provide basic knowledge for understanding exogenous protein translocation in transgrafted plants.</p>\",\"PeriodicalId\":20411,\"journal\":{\"name\":\"Plant Biotechnology\",\"volume\":\"41 4\",\"pages\":\"345-356\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897739/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5511/plantbiotechnology.24.0501b\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.24.0501b","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

嫁接是一种利用转基因(GM)植物与非转基因(non-GM)作物作为嫁接伙伴的技术,从通常被视为非转基因产品的移植作物中获得非转基因可食用作物。然而,从移植作物中提取的非转基因部分是否属于非转基因食品仍不确定,因此,研究移植植物中转基因部分物质向非转基因可食用部分的潜在易位是至关重要的。在本研究中,我们探讨了外源蛋白(荧光素酶和绿色荧光蛋白)在由转基因植物砧木和非转基因番茄接穗组成的模型移栽植株中的易位。我们的研究结果表明,在所有被调查的情况下,外源蛋白在非转基因番茄接穗的茎组织中积累。非转基因番茄茎组织中外源蛋白积累的水平和模式因移栽植株和砧木植物种类而异。然而,在目前的实验条件下,在非转基因番茄接穗的果实、可食用部分和成熟叶片中均未检测到外源蛋白。我们的研究结果为了解外源蛋白在移栽植物中的易位提供了基础知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Translocation of green fluorescent protein in homo- and hetero-transgrafted plants.

Transgrafting, a technique involving the use of genetically modified (GM) plants as grafting partners with non-genetically modified (non-GM) crops, presents non-GM edible harvests from transgrafted crops, often considered as non-GM products. However, the classification of the non-GM portions from transgrafted crops as non-GM foods remains uncertain, therefore it is critical to investigate the potential translocation of substances from GM portions to non-GM edible portions in transgrafted plants. In this study, we explored the translocation of exogenous proteins (luciferase and green fluorescent protein) in model transgrafted plants consisting of GM plant rootstocks and non-GM tomato scions. Our results suggest that exogenous proteins accumulated in the stem tissues of non-GM tomato scions in all cases investigated. The levels and patterns of exogenous protein accumulation in the non-GM tomato stem tissues varied among the individual transgrafted plants and rootstock plant species used. However, exogenous proteins were not detected in the fruits, the edible part of the tomato, and in mature leaves in non-GM tomato scions under the current experimental conditions. Our results provide basic knowledge for understanding exogenous protein translocation in transgrafted plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Biotechnology
Plant Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-PLANT SCIENCES
CiteScore
2.90
自引率
18.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信