通过优化 Cas9 密码子提高日本雪松(Cryptomeria japonica D. Don)的基因组编辑效率。

IF 1.4 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yoshihiko Nanasato, Harunori Kawabe, Saneyoshi Ueno, Ken-Ichi Konagaya, Masaki Endo, Toru Taniguchi
{"title":"通过优化 Cas9 密码子提高日本雪松(Cryptomeria japonica D. Don)的基因组编辑效率。","authors":"Yoshihiko Nanasato, Harunori Kawabe, Saneyoshi Ueno, Ken-Ichi Konagaya, Masaki Endo, Toru Taniguchi","doi":"10.5511/plantbiotechnology.24.0709a","DOIUrl":null,"url":null,"abstract":"<p><p>Japanese cedar or sugi (<i>Cryptomeria japonica</i> D. Don) is among the most important plantation conifers in Japan, occupying 12% of the total land area in the country. We have successfully established a CRISPR/Cas9-based genome editing system in <i>C. japonica</i>. However, in practical use, we encountered problems of low efficiency when generating biallelic mutations, i.e., target gene knockouts. As part of our efforts to improve efficiency, we codon-optimized the Cas9 gene, evaluated by the genome editing efficiency of <i>CjChl I</i>, a gene encoding a chlorophyll biosynthesis enzyme. As a result, our codon-optimized SpCas9, named <sup>Cj</sup>SpCas9, performed the highest genome editing efficiency of two targets (t4, t1+t2). Specifically, the biallelic disruption efficiency of the <i>CjChl I</i> with <sup>Cj</sup>SpCas9 was 1.8-fold higher than that of the SpCas9 gene optimized for <i>Arabidopsis thaliana</i> (<sup>At</sup>SpCas9) and 2.0-fold higher than that of the SpCas9 gene optimized for <i>Orysa sativa</i> (<sup>Os</sup>SpCas9) for t4, respectively. For t1+t2, the efficiency was 4.9-fold higher than that of <sup>At</sup>SpCas9 and 1.4-fold higher than that of <sup>Os</sup>SpCas9, respectively. Our western blotting analysis proved that the Cas9 protein accumulation increased upon codon frequency optimization. We concluded that the observed efficiency improvement was due to the increased Cas9 protein quantity. The efficient genome editing system we report here would accelerate molecular breeding in conifers.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 4","pages":"335-344"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897717/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improvement of genome editing efficiency by Cas9 codon optimization in Japanese cedar (<i>Cryptomeria japonica</i> D. Don).\",\"authors\":\"Yoshihiko Nanasato, Harunori Kawabe, Saneyoshi Ueno, Ken-Ichi Konagaya, Masaki Endo, Toru Taniguchi\",\"doi\":\"10.5511/plantbiotechnology.24.0709a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Japanese cedar or sugi (<i>Cryptomeria japonica</i> D. Don) is among the most important plantation conifers in Japan, occupying 12% of the total land area in the country. We have successfully established a CRISPR/Cas9-based genome editing system in <i>C. japonica</i>. However, in practical use, we encountered problems of low efficiency when generating biallelic mutations, i.e., target gene knockouts. As part of our efforts to improve efficiency, we codon-optimized the Cas9 gene, evaluated by the genome editing efficiency of <i>CjChl I</i>, a gene encoding a chlorophyll biosynthesis enzyme. As a result, our codon-optimized SpCas9, named <sup>Cj</sup>SpCas9, performed the highest genome editing efficiency of two targets (t4, t1+t2). Specifically, the biallelic disruption efficiency of the <i>CjChl I</i> with <sup>Cj</sup>SpCas9 was 1.8-fold higher than that of the SpCas9 gene optimized for <i>Arabidopsis thaliana</i> (<sup>At</sup>SpCas9) and 2.0-fold higher than that of the SpCas9 gene optimized for <i>Orysa sativa</i> (<sup>Os</sup>SpCas9) for t4, respectively. For t1+t2, the efficiency was 4.9-fold higher than that of <sup>At</sup>SpCas9 and 1.4-fold higher than that of <sup>Os</sup>SpCas9, respectively. Our western blotting analysis proved that the Cas9 protein accumulation increased upon codon frequency optimization. We concluded that the observed efficiency improvement was due to the increased Cas9 protein quantity. The efficient genome editing system we report here would accelerate molecular breeding in conifers.</p>\",\"PeriodicalId\":20411,\"journal\":{\"name\":\"Plant Biotechnology\",\"volume\":\"41 4\",\"pages\":\"335-344\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897717/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5511/plantbiotechnology.24.0709a\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.24.0709a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of genome editing efficiency by Cas9 codon optimization in Japanese cedar (Cryptomeria japonica D. Don).

Japanese cedar or sugi (Cryptomeria japonica D. Don) is among the most important plantation conifers in Japan, occupying 12% of the total land area in the country. We have successfully established a CRISPR/Cas9-based genome editing system in C. japonica. However, in practical use, we encountered problems of low efficiency when generating biallelic mutations, i.e., target gene knockouts. As part of our efforts to improve efficiency, we codon-optimized the Cas9 gene, evaluated by the genome editing efficiency of CjChl I, a gene encoding a chlorophyll biosynthesis enzyme. As a result, our codon-optimized SpCas9, named CjSpCas9, performed the highest genome editing efficiency of two targets (t4, t1+t2). Specifically, the biallelic disruption efficiency of the CjChl I with CjSpCas9 was 1.8-fold higher than that of the SpCas9 gene optimized for Arabidopsis thaliana (AtSpCas9) and 2.0-fold higher than that of the SpCas9 gene optimized for Orysa sativa (OsSpCas9) for t4, respectively. For t1+t2, the efficiency was 4.9-fold higher than that of AtSpCas9 and 1.4-fold higher than that of OsSpCas9, respectively. Our western blotting analysis proved that the Cas9 protein accumulation increased upon codon frequency optimization. We concluded that the observed efficiency improvement was due to the increased Cas9 protein quantity. The efficient genome editing system we report here would accelerate molecular breeding in conifers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Biotechnology
Plant Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-PLANT SCIENCES
CiteScore
2.90
自引率
18.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信