Dongni Lan, Kongmei Li, Zhimao Ye, Yicai Luo, Cuiping Li, Hao Li
{"title":"Mogroside V enhances bone marrow mesenchymal stem cells osteogenesis under hyperglycemic conditions through upregulating miR-10b-5p and PI3K/Akt signaling.","authors":"Dongni Lan, Kongmei Li, Zhimao Ye, Yicai Luo, Cuiping Li, Hao Li","doi":"10.1186/s13018-025-05684-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mogroside V (MV) is a triterpene glucoside that reportedly exhibits an array of antitumor, anti-inflammatory, hypolipidemic, and hypoglycemic properties. In prior studies, our group determined that MV was able to readily enhance osteogenic bone marrow mesenchymal stem cells (BMSCs) differentiation under high-glucose conditions through mechanisms potentially associated with miR-10b-5p and PI3K/Akt signaling activity. The precise molecular basis for these effects, however, remains to be fully elucidated.</p><p><strong>Objective: </strong>This study aims to explore the potential mechanisms by which MV regulates the osteogenic differentiation of BMSCs under hyperglycemic conditions.</p><p><strong>Methods: </strong>Femoral and tibial BMSCs were isolated from control and diabetic C57BL/6J mice. qRT-PCR was used to quantify miR-10b-5p levels. Putative miR-10b-5p target genes were predicted through bioinformatics assays and validated in a luciferase reporter assay system. miR-10b-5p expression was inhibited with an antagomiR-10b-5p construct, while PI3K/Akt pathway signaling was inhibited with LY294002. Western blotting was used to detect PI3K/Akt pathway and target gene protein levels, while Alizarin red staining was used to detect calcium nodule deposition by BMSCs.</p><p><strong>Results: </strong>miR-10b-5p upregulation was noted in BMSCs exposed to hyperglycemic conditions. HOXD10 was identified as a cell differentiation-related miR-10b-5p target gene in bioinformatics analyses, and the targeting relationship between the two was confirmed in a luciferase reporter assay. MV treatment elicited significantly higher levels of miR-10b-5p expression, PI3K phosphorylation, and calcium deposition, while antagomiR-10b-5p or LY294002 treatment reversed these changes, and the opposite trends were observed with respect to HOXD10 protein levels.</p><p><strong>Conclusion: </strong>MV favors BMSCs osteogenic differentiation under high-glucose conditions through the upregulation of miR-10b-5p and the activation of PI3K/Akt signaling.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"20 1","pages":"278"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907933/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-025-05684-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Mogroside V enhances bone marrow mesenchymal stem cells osteogenesis under hyperglycemic conditions through upregulating miR-10b-5p and PI3K/Akt signaling.
Background: Mogroside V (MV) is a triterpene glucoside that reportedly exhibits an array of antitumor, anti-inflammatory, hypolipidemic, and hypoglycemic properties. In prior studies, our group determined that MV was able to readily enhance osteogenic bone marrow mesenchymal stem cells (BMSCs) differentiation under high-glucose conditions through mechanisms potentially associated with miR-10b-5p and PI3K/Akt signaling activity. The precise molecular basis for these effects, however, remains to be fully elucidated.
Objective: This study aims to explore the potential mechanisms by which MV regulates the osteogenic differentiation of BMSCs under hyperglycemic conditions.
Methods: Femoral and tibial BMSCs were isolated from control and diabetic C57BL/6J mice. qRT-PCR was used to quantify miR-10b-5p levels. Putative miR-10b-5p target genes were predicted through bioinformatics assays and validated in a luciferase reporter assay system. miR-10b-5p expression was inhibited with an antagomiR-10b-5p construct, while PI3K/Akt pathway signaling was inhibited with LY294002. Western blotting was used to detect PI3K/Akt pathway and target gene protein levels, while Alizarin red staining was used to detect calcium nodule deposition by BMSCs.
Results: miR-10b-5p upregulation was noted in BMSCs exposed to hyperglycemic conditions. HOXD10 was identified as a cell differentiation-related miR-10b-5p target gene in bioinformatics analyses, and the targeting relationship between the two was confirmed in a luciferase reporter assay. MV treatment elicited significantly higher levels of miR-10b-5p expression, PI3K phosphorylation, and calcium deposition, while antagomiR-10b-5p or LY294002 treatment reversed these changes, and the opposite trends were observed with respect to HOXD10 protein levels.
Conclusion: MV favors BMSCs osteogenic differentiation under high-glucose conditions through the upregulation of miR-10b-5p and the activation of PI3K/Akt signaling.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.