反铁磁体隧道磁阻效应的研究。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Katsuhiro Tanaka, Takuya Nomoto, Ryotaro Arita
{"title":"反铁磁体隧道磁阻效应的研究。","authors":"Katsuhiro Tanaka, Takuya Nomoto, Ryotaro Arita","doi":"10.1088/1361-648X/adc05e","DOIUrl":null,"url":null,"abstract":"<p><p>The tunnel magnetoresistance (TMR) effect is one of the representative phenomena in spintronics. Ferromagnets, which have a net spin polarization, have been utilized for the TMR effect. Recently, by contrast, the TMR effect with antiferromagnets, which do not possess a macroscopic spin polarization, has been proposed, and also been observed in experiments. In this topical review, we discuss recent developments in the TMR effect, particularly focusing on the TMR effect with antiferromagnets. First, we review how the TMR effect can occur in antiferromagnetic tunnel junctions. The Julliere model, which has been conventionally utilized to grasp the TMR effect with ferromagnets, breaks down for the antiferromagnetic TMR effect. Instead, we see that the momentum dependent spin splitting explains the antiferromagnetic TMR effect. After that, we revisit the TMR effect from viewpoint of the local density of states (LDOS). We particularly focus on the LDOS inside the barrier, and show that the product of the LDOS will qualitatively capture the TMR effect not only in the ferromagnetic tunnel junctions but also in the ferrimagnetic and antiferromagnetic tunnel junctions. This method is expected to work usefully for designing magnetic tunnel junctions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approaches to tunnel magnetoresistance effect with antiferromagnets.\",\"authors\":\"Katsuhiro Tanaka, Takuya Nomoto, Ryotaro Arita\",\"doi\":\"10.1088/1361-648X/adc05e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The tunnel magnetoresistance (TMR) effect is one of the representative phenomena in spintronics. Ferromagnets, which have a net spin polarization, have been utilized for the TMR effect. Recently, by contrast, the TMR effect with antiferromagnets, which do not possess a macroscopic spin polarization, has been proposed, and also been observed in experiments. In this topical review, we discuss recent developments in the TMR effect, particularly focusing on the TMR effect with antiferromagnets. First, we review how the TMR effect can occur in antiferromagnetic tunnel junctions. The Julliere model, which has been conventionally utilized to grasp the TMR effect with ferromagnets, breaks down for the antiferromagnetic TMR effect. Instead, we see that the momentum dependent spin splitting explains the antiferromagnetic TMR effect. After that, we revisit the TMR effect from viewpoint of the local density of states (LDOS). We particularly focus on the LDOS inside the barrier, and show that the product of the LDOS will qualitatively capture the TMR effect not only in the ferromagnetic tunnel junctions but also in the ferrimagnetic and antiferromagnetic tunnel junctions. This method is expected to work usefully for designing magnetic tunnel junctions.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/adc05e\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc05e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

隧道磁阻效应是自旋电子学中的代表性现象之一。具有净自旋极化的铁磁体已被用于TMR效应。相反,近年来,不具有宏观自旋极化的反铁磁体的TMR效应被提出,并在实验中被观察到。在这篇专题综述中,我们讨论了TMR效应的最新进展,特别是反铁磁体的TMR效应。首先,我们回顾了TMR效应如何在反铁磁隧道结中发生。通常用来描述铁磁体的TMR效应的Julliere模型在描述反铁磁TMR效应时失效了。相反,我们看到动量依赖的自旋分裂解释了反铁磁TMR效应。然后,我们从局域态密度(LDOS)的角度重新讨论了TMR效应。我们特别关注势垒内的LDOS,并表明LDOS的产物不仅在铁磁隧道结中,而且在铁磁和反铁磁隧道结中都能定性地捕获TMR效应。该方法有望在磁隧道结的设计中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approaches to tunnel magnetoresistance effect with antiferromagnets.

The tunnel magnetoresistance (TMR) effect is one of the representative phenomena in spintronics. Ferromagnets, which have a net spin polarization, have been utilized for the TMR effect. Recently, by contrast, the TMR effect with antiferromagnets, which do not possess a macroscopic spin polarization, has been proposed, and also been observed in experiments. In this topical review, we discuss recent developments in the TMR effect, particularly focusing on the TMR effect with antiferromagnets. First, we review how the TMR effect can occur in antiferromagnetic tunnel junctions. The Julliere model, which has been conventionally utilized to grasp the TMR effect with ferromagnets, breaks down for the antiferromagnetic TMR effect. Instead, we see that the momentum dependent spin splitting explains the antiferromagnetic TMR effect. After that, we revisit the TMR effect from viewpoint of the local density of states (LDOS). We particularly focus on the LDOS inside the barrier, and show that the product of the LDOS will qualitatively capture the TMR effect not only in the ferromagnetic tunnel junctions but also in the ferrimagnetic and antiferromagnetic tunnel junctions. This method is expected to work usefully for designing magnetic tunnel junctions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信