全外显子组测序揭示了高度近视遗传结构的性别差异。

IF 3.5 2区 医学 Q2 GENETICS & HEREDITY
Xingchen Liu, Jiacheng Liang, Shasha Li, Yuhe Yang, Qinghao Zhu, Ruowen Qiu, Zheng Ji Chen, Yinghao Yao, Qing Ren, Xiaoguang Yu, Jia Qu, Jianzhong Su, Jian Yuan
{"title":"全外显子组测序揭示了高度近视遗传结构的性别差异。","authors":"Xingchen Liu, Jiacheng Liang, Shasha Li, Yuhe Yang, Qinghao Zhu, Ruowen Qiu, Zheng Ji Chen, Yinghao Yao, Qing Ren, Xiaoguang Yu, Jia Qu, Jianzhong Su, Jian Yuan","doi":"10.1136/jmg-2024-110467","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High myopia (HM) is one of the leading causes of visual impairment and blindness worldwide. To understand the sex difference in the genetic architecture of HM, which may contribute to understanding HM aetiology and help further the realisation of precision medicine for HM.</p><p><strong>Methods: </strong>We performed sex-stratified exome-wide association studies (ExWAS) with n (males)=7492 and n (females)=8090, along with gene- and pathway-based tests and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to HM in a sex-specific manner.</p><p><strong>Results: </strong>In our ExWAS, we identified that a male-specific gene, <i>CHRNB1</i> (Z<sub>females</sub>=1.382, P<sub>females</sub>=0.083; Z<sub>males</sub>=4.029, P<sub>males</sub>=2.80×10<sup>-05</sup>; P<sub>difference</sub>=0.003), was associated with higher risk scores of HM in males than in females. Rare variant burden tests showed a significant excess of rare protein-truncating variants among HM males in <i>CHRNB1</i>-related pathways, including cell-cell signalling and muscle structure development. Sex-based differences in gene expression within <i>CHRNB1</i>-enriched ciliary body cells were observed; specifically, increased expression of mitochondrial metabolism-related genes in males and antioxidant genes in females. Functional differences in mitochondrial metabolism were confirmed in male-derived H1 and female-derived H9 human embryonic stem cell lines, with H1 cells specifically exhibiting significant dysregulation of mitochondrial organisation and mitochondrial respiratory chain complex assembly after <i>CHRNB1</i> knockdown.</p><p><strong>Conclusion: </strong>Together, our study provides insight into the sex differences in the genetic architecture of HM and highlights <i>CHRNB1</i>'s role in HM pathogenesis in males.</p>","PeriodicalId":16237,"journal":{"name":"Journal of Medical Genetics","volume":" ","pages":"358-368"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole-exome sequencing reveals sex difference in the genetic architecture of high myopia.\",\"authors\":\"Xingchen Liu, Jiacheng Liang, Shasha Li, Yuhe Yang, Qinghao Zhu, Ruowen Qiu, Zheng Ji Chen, Yinghao Yao, Qing Ren, Xiaoguang Yu, Jia Qu, Jianzhong Su, Jian Yuan\",\"doi\":\"10.1136/jmg-2024-110467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>High myopia (HM) is one of the leading causes of visual impairment and blindness worldwide. To understand the sex difference in the genetic architecture of HM, which may contribute to understanding HM aetiology and help further the realisation of precision medicine for HM.</p><p><strong>Methods: </strong>We performed sex-stratified exome-wide association studies (ExWAS) with n (males)=7492 and n (females)=8090, along with gene- and pathway-based tests and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to HM in a sex-specific manner.</p><p><strong>Results: </strong>In our ExWAS, we identified that a male-specific gene, <i>CHRNB1</i> (Z<sub>females</sub>=1.382, P<sub>females</sub>=0.083; Z<sub>males</sub>=4.029, P<sub>males</sub>=2.80×10<sup>-05</sup>; P<sub>difference</sub>=0.003), was associated with higher risk scores of HM in males than in females. Rare variant burden tests showed a significant excess of rare protein-truncating variants among HM males in <i>CHRNB1</i>-related pathways, including cell-cell signalling and muscle structure development. Sex-based differences in gene expression within <i>CHRNB1</i>-enriched ciliary body cells were observed; specifically, increased expression of mitochondrial metabolism-related genes in males and antioxidant genes in females. Functional differences in mitochondrial metabolism were confirmed in male-derived H1 and female-derived H9 human embryonic stem cell lines, with H1 cells specifically exhibiting significant dysregulation of mitochondrial organisation and mitochondrial respiratory chain complex assembly after <i>CHRNB1</i> knockdown.</p><p><strong>Conclusion: </strong>Together, our study provides insight into the sex differences in the genetic architecture of HM and highlights <i>CHRNB1</i>'s role in HM pathogenesis in males.</p>\",\"PeriodicalId\":16237,\"journal\":{\"name\":\"Journal of Medical Genetics\",\"volume\":\" \",\"pages\":\"358-368\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jmg-2024-110467\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jmg-2024-110467","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:高度近视(HM)是世界范围内视力损害和失明的主要原因之一。了解HM遗传结构的性别差异,有助于了解HM的病因,并有助于进一步实现HM的精准医疗。方法:我们进行了性别分层的外显子组全关联研究(ExWAS), n(男性)=7492,n(女性)=8090,以及基于基因和途径的测试和遗传相关性分析,以明确以性别特异性方式与HM相关的变异、基因和分子途径。结果:在ExWAS中,我们发现了一个男性特异性基因CHRNB1 (zfemale =1.382, pfemale =0.083;Zmales = 4.029, Pmales = 2.80×10-05;Pdifference=0.003),男性患HM的风险评分高于女性。罕见变异负荷试验显示,在chrnb1相关通路中,包括细胞-细胞信号传导和肌肉结构发育,HM男性中罕见的蛋白质截断变异显著过量。观察了富含chrnb1的纤毛体细胞中基因表达的性别差异;具体来说,雄性线粒体代谢相关基因和雌性抗氧化基因的表达增加。在男性来源的H1和女性来源的H9人胚胎干细胞系中证实了线粒体代谢的功能差异,其中H1细胞在CHRNB1基因敲除后,线粒体组织和线粒体呼吸链复合物组装明显失调。结论:我们的研究揭示了HM遗传结构的性别差异,并强调了CHRNB1在男性HM发病中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whole-exome sequencing reveals sex difference in the genetic architecture of high myopia.

Background: High myopia (HM) is one of the leading causes of visual impairment and blindness worldwide. To understand the sex difference in the genetic architecture of HM, which may contribute to understanding HM aetiology and help further the realisation of precision medicine for HM.

Methods: We performed sex-stratified exome-wide association studies (ExWAS) with n (males)=7492 and n (females)=8090, along with gene- and pathway-based tests and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to HM in a sex-specific manner.

Results: In our ExWAS, we identified that a male-specific gene, CHRNB1 (Zfemales=1.382, Pfemales=0.083; Zmales=4.029, Pmales=2.80×10-05; Pdifference=0.003), was associated with higher risk scores of HM in males than in females. Rare variant burden tests showed a significant excess of rare protein-truncating variants among HM males in CHRNB1-related pathways, including cell-cell signalling and muscle structure development. Sex-based differences in gene expression within CHRNB1-enriched ciliary body cells were observed; specifically, increased expression of mitochondrial metabolism-related genes in males and antioxidant genes in females. Functional differences in mitochondrial metabolism were confirmed in male-derived H1 and female-derived H9 human embryonic stem cell lines, with H1 cells specifically exhibiting significant dysregulation of mitochondrial organisation and mitochondrial respiratory chain complex assembly after CHRNB1 knockdown.

Conclusion: Together, our study provides insight into the sex differences in the genetic architecture of HM and highlights CHRNB1's role in HM pathogenesis in males.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Genetics
Journal of Medical Genetics 医学-遗传学
CiteScore
7.60
自引率
2.50%
发文量
92
审稿时长
4-8 weeks
期刊介绍: Journal of Medical Genetics is a leading international peer-reviewed journal covering original research in human genetics, including reviews of and opinion on the latest developments. Articles cover the molecular basis of human disease including germline cancer genetics, clinical manifestations of genetic disorders, applications of molecular genetics to medical practice and the systematic evaluation of such applications worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信