抗肿瘤坏死因子治疗全身性自身炎性疾病:先天免疫细胞的反应。

IF 3.6 3区 医学 Q3 CELL BIOLOGY
Shuyi Wang, Rufei Xiao, Yibo Chen, Yishan Ye, Tianzhen He, Yang Yang, Xin Chen, Chon-Kit Chou
{"title":"抗肿瘤坏死因子治疗全身性自身炎性疾病:先天免疫细胞的反应。","authors":"Shuyi Wang, Rufei Xiao, Yibo Chen, Yishan Ye, Tianzhen He, Yang Yang, Xin Chen, Chon-Kit Chou","doi":"10.1093/jleuko/qiaf026","DOIUrl":null,"url":null,"abstract":"<p><p>Systemic autoinflammatory diseases are rare conditions resulting from dysregulation of the innate immune system, culminating in repetitive bouts of systemic inflammation without the presence of external or self-antigens. Most systemic autoinflammatory diseases are associated with mutations in genes affecting the innate immune response. Tumor necrosis factor is a central player in the pathogenesis of numerous chronic inflammatory disorders, and anti-tumor necrosis factor therapy is widely used in the clinical management of systemic autoinflammatory diseases. Tumor necrosis factor inhibitors block the interaction of tumor necrosis factor with its 2 receptors, tumor necrosis factor receptor 1 and tumor necrosis factor receptor 2. These inhibitors primarily target soluble tumor necrosis factor, which mainly binds to tumor necrosis factor receptor 1, exerting anti-inflammatory effects. Interestingly, tumor necrosis factor inhibitors also affect transmembrane tumor necrosis factor, which engages tumor necrosis factor receptor 2 to initiate reverse signaling. This reverse signaling can activate innate immune cells, prevent apoptosis, or paradoxically inhibit the production of pro-inflammatory cytokines. Tumor necrosis factor inhibitors also promote the release of soluble tumor necrosis factor receptor 2, which neutralizes circulating tumor necrosis factor. Some agents targeting tumor necrosis factor receptor 2 can even act as agonists, triggering reverse signaling by binding to transmembrane tumor necrosis factor. While effective, prolonged use of tumor necrosis factor inhibitors may cause significant side effects due to the widespread expression and pleiotropic functions of tumor necrosis factor receptors. A more thorough understanding of the mechanisms underlying the action of tumor necrosis factor inhibitors is required to develop a more effective and safer treatment for systemic autoinflammatory diseases. This article reviews current studies on the role of the innate immune system in systemic autoinflammatory disease pathogenesis, the impact of anti-tumor necrosis factor therapy on innate immune cells, and perspectives on developing improved agents targeting tumor necrosis factor or its receptors.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-tumor necrosis factor therapy in the treatment of systemic autoinflammatory diseases: the responses of innate immune cells.\",\"authors\":\"Shuyi Wang, Rufei Xiao, Yibo Chen, Yishan Ye, Tianzhen He, Yang Yang, Xin Chen, Chon-Kit Chou\",\"doi\":\"10.1093/jleuko/qiaf026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Systemic autoinflammatory diseases are rare conditions resulting from dysregulation of the innate immune system, culminating in repetitive bouts of systemic inflammation without the presence of external or self-antigens. Most systemic autoinflammatory diseases are associated with mutations in genes affecting the innate immune response. Tumor necrosis factor is a central player in the pathogenesis of numerous chronic inflammatory disorders, and anti-tumor necrosis factor therapy is widely used in the clinical management of systemic autoinflammatory diseases. Tumor necrosis factor inhibitors block the interaction of tumor necrosis factor with its 2 receptors, tumor necrosis factor receptor 1 and tumor necrosis factor receptor 2. These inhibitors primarily target soluble tumor necrosis factor, which mainly binds to tumor necrosis factor receptor 1, exerting anti-inflammatory effects. Interestingly, tumor necrosis factor inhibitors also affect transmembrane tumor necrosis factor, which engages tumor necrosis factor receptor 2 to initiate reverse signaling. This reverse signaling can activate innate immune cells, prevent apoptosis, or paradoxically inhibit the production of pro-inflammatory cytokines. Tumor necrosis factor inhibitors also promote the release of soluble tumor necrosis factor receptor 2, which neutralizes circulating tumor necrosis factor. Some agents targeting tumor necrosis factor receptor 2 can even act as agonists, triggering reverse signaling by binding to transmembrane tumor necrosis factor. While effective, prolonged use of tumor necrosis factor inhibitors may cause significant side effects due to the widespread expression and pleiotropic functions of tumor necrosis factor receptors. A more thorough understanding of the mechanisms underlying the action of tumor necrosis factor inhibitors is required to develop a more effective and safer treatment for systemic autoinflammatory diseases. This article reviews current studies on the role of the innate immune system in systemic autoinflammatory disease pathogenesis, the impact of anti-tumor necrosis factor therapy on innate immune cells, and perspectives on developing improved agents targeting tumor necrosis factor or its receptors.</p>\",\"PeriodicalId\":16186,\"journal\":{\"name\":\"Journal of Leukocyte Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leukocyte Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jleuko/qiaf026\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiaf026","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

系统性自身炎症性疾病(SAIDs)是由先天免疫系统失调引起的罕见疾病,在没有外部或自身抗原存在的情况下,最终导致反复发作的系统性炎症。大多数said与影响先天免疫反应的基因突变有关。肿瘤坏死因子(TNF)在许多慢性炎症性疾病的发病机制中起着核心作用,抗TNF治疗被广泛应用于said的临床治疗。TNF抑制剂阻断TNF与其两种受体TNF受体1 (TNFR1)和TNF受体2 (TNFR2)的相互作用。这些抑制剂主要针对可溶性TNF (sTNF),其主要与TNFR1结合,发挥抗炎作用。有趣的是,TNF抑制剂也会影响跨膜TNF (tmTNF),其参与TNFR2启动反向信号传导。这种反向信号可以激活先天免疫细胞,防止细胞凋亡,或矛盾地抑制促炎细胞因子的产生。TNF抑制剂还促进可溶性TNFR2 (sTNFR2)的释放,从而中和循环TNF。一些靶向TNFR2的药物甚至可以作为激动剂,通过与tmTNF结合触发反向信号。虽然有效,但由于TNF受体的广泛表达和多效性,长期使用TNF抑制剂可能会引起显著的副作用。需要更彻底地了解TNF抑制剂作用的机制,以开发更有效和更安全的saaids治疗方法。本文综述了目前先天性免疫系统在SAID发病机制中的作用,抗TNF治疗对先天性免疫细胞的影响,以及开发靶向TNF或其受体的改进药物的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anti-tumor necrosis factor therapy in the treatment of systemic autoinflammatory diseases: the responses of innate immune cells.

Systemic autoinflammatory diseases are rare conditions resulting from dysregulation of the innate immune system, culminating in repetitive bouts of systemic inflammation without the presence of external or self-antigens. Most systemic autoinflammatory diseases are associated with mutations in genes affecting the innate immune response. Tumor necrosis factor is a central player in the pathogenesis of numerous chronic inflammatory disorders, and anti-tumor necrosis factor therapy is widely used in the clinical management of systemic autoinflammatory diseases. Tumor necrosis factor inhibitors block the interaction of tumor necrosis factor with its 2 receptors, tumor necrosis factor receptor 1 and tumor necrosis factor receptor 2. These inhibitors primarily target soluble tumor necrosis factor, which mainly binds to tumor necrosis factor receptor 1, exerting anti-inflammatory effects. Interestingly, tumor necrosis factor inhibitors also affect transmembrane tumor necrosis factor, which engages tumor necrosis factor receptor 2 to initiate reverse signaling. This reverse signaling can activate innate immune cells, prevent apoptosis, or paradoxically inhibit the production of pro-inflammatory cytokines. Tumor necrosis factor inhibitors also promote the release of soluble tumor necrosis factor receptor 2, which neutralizes circulating tumor necrosis factor. Some agents targeting tumor necrosis factor receptor 2 can even act as agonists, triggering reverse signaling by binding to transmembrane tumor necrosis factor. While effective, prolonged use of tumor necrosis factor inhibitors may cause significant side effects due to the widespread expression and pleiotropic functions of tumor necrosis factor receptors. A more thorough understanding of the mechanisms underlying the action of tumor necrosis factor inhibitors is required to develop a more effective and safer treatment for systemic autoinflammatory diseases. This article reviews current studies on the role of the innate immune system in systemic autoinflammatory disease pathogenesis, the impact of anti-tumor necrosis factor therapy on innate immune cells, and perspectives on developing improved agents targeting tumor necrosis factor or its receptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Leukocyte Biology
Journal of Leukocyte Biology 医学-免疫学
CiteScore
11.50
自引率
0.00%
发文量
358
审稿时长
2 months
期刊介绍: JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信