Valentin V Demidov, Matthew C Bond, Natalia Demidova, Ida Leah Gitajn, Carey D Nadell, Jonathan Thomas Elliott
{"title":"利用光学相干断层扫描评价光动力疗法对大肠杆菌-粪肠球菌生物膜的疗效。","authors":"Valentin V Demidov, Matthew C Bond, Natalia Demidova, Ida Leah Gitajn, Carey D Nadell, Jonathan Thomas Elliott","doi":"10.1117/1.JBO.30.3.036003","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>In orthopedic trauma surgery, spatially structured biofilm ecosystems of bacteria that colonize orthopedic devices account for up to 65% of all healthcare infections, including tens of millions of people affected in the United States. These biofilm infections typically show increased resistance to antibiotics due to their structure and composition, which contributes significantly to treatment failure. Anti-biofilm approaches are needed together with clinically usable microscopic-resolution imaging techniques for treatment efficacy assessment.</p><p><strong>Aim: </strong>Antimicrobial photodynamic therapy (aPDT) has been recently proposed to combat clinically relevant biofilms (chronic wound infections, dental biofilms, etc.) using photosensitizers excited with visible light to generate reactive oxygen species that can kill bacteria residing within pathogenic biofilms. We aim to assess the efficacy of this treatment for eradication of biofilms typically present on surfaces of orthopedic devices (e.g., intramedullary nails and osseointegrated prosthetic implants).</p><p><strong>Approach: </strong>In the first phase reported here, we test aPDT <i>in vitro</i> by growing biofilms of <i>Escherichia coli</i> and <i>Enterococcus faecalis</i> bacteria (two of the seven most common pathogens found in orthopedic trauma patients) inside soft lithography-fabricated microfluidic devices. We treat these biofilms with 5-aminolevulinic acid (5-ALA)-based aPDT, evaluate treatment efficacy with optical coherence tomography, and compare with regular clinical antibiotic treatment outcomes.</p><p><strong>Results: </strong>The antibacterial efficiency of 5-ALA-based aPDT showed nonlinear dependence on the photosensitizer concentration and the light power density, with low parameters ( <math><mrow><mn>30</mn> <mtext> </mtext> <mi>J</mi> <mo>/</mo> <msup><mrow><mi>cm</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> </math> light dose, <math><mrow><mn>100</mn> <mtext> </mtext> <mi>mg</mi> <mo>/</mo> <mi>mL</mi></mrow> </math> 5-ALA concentration) being significantly more effective than antibiotic-treated groups ( <math><mrow><mi>p</mi> <mo><</mo> <mn>0.01</mn></mrow> </math> ), reaching 99.98% of bacteria killed at <math><mrow><mn>150</mn> <mtext> </mtext> <mi>J</mi> <mo>/</mo> <msup><mrow><mi>cm</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> </math> light dose and <math><mrow><mn>200</mn> <mtext> </mtext> <mi>mg</mi> <mo>/</mo> <mi>mL</mi></mrow> </math> 5-ALA concentration setting.</p><p><strong>Conclusions: </strong>Performed experiments enable the translation of this portable treatment/imaging platform to the second phase of the study: aPDT treatment response assessment of biofilms grown on orthopedic hardware.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 3","pages":"036003"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905920/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment of photodynamic therapy efficacy against <i>Escherichia coli</i>-<i>Enterococcus faecalis</i> biofilms using optical coherence tomography.\",\"authors\":\"Valentin V Demidov, Matthew C Bond, Natalia Demidova, Ida Leah Gitajn, Carey D Nadell, Jonathan Thomas Elliott\",\"doi\":\"10.1117/1.JBO.30.3.036003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>In orthopedic trauma surgery, spatially structured biofilm ecosystems of bacteria that colonize orthopedic devices account for up to 65% of all healthcare infections, including tens of millions of people affected in the United States. These biofilm infections typically show increased resistance to antibiotics due to their structure and composition, which contributes significantly to treatment failure. Anti-biofilm approaches are needed together with clinically usable microscopic-resolution imaging techniques for treatment efficacy assessment.</p><p><strong>Aim: </strong>Antimicrobial photodynamic therapy (aPDT) has been recently proposed to combat clinically relevant biofilms (chronic wound infections, dental biofilms, etc.) using photosensitizers excited with visible light to generate reactive oxygen species that can kill bacteria residing within pathogenic biofilms. We aim to assess the efficacy of this treatment for eradication of biofilms typically present on surfaces of orthopedic devices (e.g., intramedullary nails and osseointegrated prosthetic implants).</p><p><strong>Approach: </strong>In the first phase reported here, we test aPDT <i>in vitro</i> by growing biofilms of <i>Escherichia coli</i> and <i>Enterococcus faecalis</i> bacteria (two of the seven most common pathogens found in orthopedic trauma patients) inside soft lithography-fabricated microfluidic devices. We treat these biofilms with 5-aminolevulinic acid (5-ALA)-based aPDT, evaluate treatment efficacy with optical coherence tomography, and compare with regular clinical antibiotic treatment outcomes.</p><p><strong>Results: </strong>The antibacterial efficiency of 5-ALA-based aPDT showed nonlinear dependence on the photosensitizer concentration and the light power density, with low parameters ( <math><mrow><mn>30</mn> <mtext> </mtext> <mi>J</mi> <mo>/</mo> <msup><mrow><mi>cm</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> </math> light dose, <math><mrow><mn>100</mn> <mtext> </mtext> <mi>mg</mi> <mo>/</mo> <mi>mL</mi></mrow> </math> 5-ALA concentration) being significantly more effective than antibiotic-treated groups ( <math><mrow><mi>p</mi> <mo><</mo> <mn>0.01</mn></mrow> </math> ), reaching 99.98% of bacteria killed at <math><mrow><mn>150</mn> <mtext> </mtext> <mi>J</mi> <mo>/</mo> <msup><mrow><mi>cm</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> </math> light dose and <math><mrow><mn>200</mn> <mtext> </mtext> <mi>mg</mi> <mo>/</mo> <mi>mL</mi></mrow> </math> 5-ALA concentration setting.</p><p><strong>Conclusions: </strong>Performed experiments enable the translation of this portable treatment/imaging platform to the second phase of the study: aPDT treatment response assessment of biofilms grown on orthopedic hardware.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 3\",\"pages\":\"036003\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905920/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.3.036003\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.3.036003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
意义:在骨科创伤手术中,定植在骨科器械上的细菌的空间结构生物膜生态系统占所有医疗保健感染的65%,包括美国数千万受影响的人。这些生物膜感染由于其结构和组成,通常表现出对抗生素的耐药性增加,这是导致治疗失败的重要原因。抗生物膜方法需要与临床可用的显微分辨率成像技术一起进行治疗效果评估。目的:抗菌光动力疗法(aPDT)最近被提出用于对抗临床相关的生物膜(慢性伤口感染,牙科生物膜等),使用可见光激发的光敏剂产生活性氧,可以杀死居住在致病性生物膜内的细菌。我们的目标是评估这种治疗对消除骨科设备(例如,髓内钉和骨整合假体植入物)表面通常存在的生物膜的疗效。方法:在本文报道的第一阶段,我们通过在软光刻制造的微流控装置内培养大肠杆菌和粪肠球菌(骨科创伤患者中最常见的七种病原体中的两种)的生物膜来体外测试aPDT。我们用5-氨基乙酰丙酸(5-ALA)为基础的aPDT治疗这些生物膜,用光学相干断层扫描评估治疗效果,并与常规临床抗生素治疗结果进行比较。结果:5-ALA基aPDT的抑菌效果与光敏剂浓度和光功率密度呈非线性关系,低参数(30 J / cm 2光剂量、100 mg / mL 5-ALA浓度)的抑菌效果显著优于抗生素处理组(p < 0.01),在150 J / cm 2光剂量、200 mg / mL 5-ALA浓度设置下,抑菌率达到99.98%。结论:已完成的实验使该便携式治疗/成像平台能够进入研究的第二阶段:骨科硬件上生长的生物膜的aPDT治疗反应评估。
Assessment of photodynamic therapy efficacy against Escherichia coli-Enterococcus faecalis biofilms using optical coherence tomography.
Significance: In orthopedic trauma surgery, spatially structured biofilm ecosystems of bacteria that colonize orthopedic devices account for up to 65% of all healthcare infections, including tens of millions of people affected in the United States. These biofilm infections typically show increased resistance to antibiotics due to their structure and composition, which contributes significantly to treatment failure. Anti-biofilm approaches are needed together with clinically usable microscopic-resolution imaging techniques for treatment efficacy assessment.
Aim: Antimicrobial photodynamic therapy (aPDT) has been recently proposed to combat clinically relevant biofilms (chronic wound infections, dental biofilms, etc.) using photosensitizers excited with visible light to generate reactive oxygen species that can kill bacteria residing within pathogenic biofilms. We aim to assess the efficacy of this treatment for eradication of biofilms typically present on surfaces of orthopedic devices (e.g., intramedullary nails and osseointegrated prosthetic implants).
Approach: In the first phase reported here, we test aPDT in vitro by growing biofilms of Escherichia coli and Enterococcus faecalis bacteria (two of the seven most common pathogens found in orthopedic trauma patients) inside soft lithography-fabricated microfluidic devices. We treat these biofilms with 5-aminolevulinic acid (5-ALA)-based aPDT, evaluate treatment efficacy with optical coherence tomography, and compare with regular clinical antibiotic treatment outcomes.
Results: The antibacterial efficiency of 5-ALA-based aPDT showed nonlinear dependence on the photosensitizer concentration and the light power density, with low parameters ( light dose, 5-ALA concentration) being significantly more effective than antibiotic-treated groups ( ), reaching 99.98% of bacteria killed at light dose and 5-ALA concentration setting.
Conclusions: Performed experiments enable the translation of this portable treatment/imaging platform to the second phase of the study: aPDT treatment response assessment of biofilms grown on orthopedic hardware.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.