Taryn Diep, Wesley Zhou, Rachel E Reyes, Matthew Nitzahn, Isabel L Day, Georgios Makris, Lindsay Lueptow, Irina Zhuravka, Stuti Bakshi, Jon Gangoiti, Hyacinth Padaon, Yunfeng Li, Bruce A Barshop, Johannes Haberle, Gerald S Lipshutz
{"title":"使用超大AAV8载体治疗CPS1缺陷可获得长期存活和氨控制。","authors":"Taryn Diep, Wesley Zhou, Rachel E Reyes, Matthew Nitzahn, Isabel L Day, Georgios Makris, Lindsay Lueptow, Irina Zhuravka, Stuti Bakshi, Jon Gangoiti, Hyacinth Padaon, Yunfeng Li, Bruce A Barshop, Johannes Haberle, Gerald S Lipshutz","doi":"10.1016/j.omtn.2025.102470","DOIUrl":null,"url":null,"abstract":"<p><p>Carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea-cycle disorder, results in hyperammonemia initiating a sequence of adverse events that can lead to coma and death if not treated rapidly. There is a high unmet need for an effective therapeutic for this disorder, especially in early neonatal patients where mortality is excessive. However, development of an adeno-associated virus (AAV)-based approach is hampered by large cDNA size and high protein requirement. We developed an oversized AAV vector as a gene therapy to treat <i>CPS1</i> deficiency. In order to constrain genome size, we utilized small liver-specific promoter/enhancers and a minimal polyadenylation signal. Long-term survival (9 months, end of study) with ammonia control was achieved in AAV8.CPS1-administered Cps1<sup>flox/flox</sup> mice, while all null vector-injected controls died with marked hyperammonemia; female mice demonstrated improved survival over treated males. While glutamine remained elevated compared to controls, ammonia was controlled in surviving animals. Mice maintained their weights and were not sarcopenic. While drinking water did contain carglumic acid, no nitrogen scavengers were administered. Although there were concerns with vector genomic integrity, these findings demonstrate proof of concept for an oversized gene-therapy approach for a challenging urea-cycle disorder where high-level hepatic protein is essential for survival.</p>","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"36 1","pages":"102470"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905892/pdf/","citationCount":"0","resultStr":"{\"title\":\"Use of an oversized AAV8 vector for CPS1 deficiency results in long-term survival and ammonia control.\",\"authors\":\"Taryn Diep, Wesley Zhou, Rachel E Reyes, Matthew Nitzahn, Isabel L Day, Georgios Makris, Lindsay Lueptow, Irina Zhuravka, Stuti Bakshi, Jon Gangoiti, Hyacinth Padaon, Yunfeng Li, Bruce A Barshop, Johannes Haberle, Gerald S Lipshutz\",\"doi\":\"10.1016/j.omtn.2025.102470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea-cycle disorder, results in hyperammonemia initiating a sequence of adverse events that can lead to coma and death if not treated rapidly. There is a high unmet need for an effective therapeutic for this disorder, especially in early neonatal patients where mortality is excessive. However, development of an adeno-associated virus (AAV)-based approach is hampered by large cDNA size and high protein requirement. We developed an oversized AAV vector as a gene therapy to treat <i>CPS1</i> deficiency. In order to constrain genome size, we utilized small liver-specific promoter/enhancers and a minimal polyadenylation signal. Long-term survival (9 months, end of study) with ammonia control was achieved in AAV8.CPS1-administered Cps1<sup>flox/flox</sup> mice, while all null vector-injected controls died with marked hyperammonemia; female mice demonstrated improved survival over treated males. While glutamine remained elevated compared to controls, ammonia was controlled in surviving animals. Mice maintained their weights and were not sarcopenic. While drinking water did contain carglumic acid, no nitrogen scavengers were administered. Although there were concerns with vector genomic integrity, these findings demonstrate proof of concept for an oversized gene-therapy approach for a challenging urea-cycle disorder where high-level hepatic protein is essential for survival.</p>\",\"PeriodicalId\":18821,\"journal\":{\"name\":\"Molecular Therapy. Nucleic Acids\",\"volume\":\"36 1\",\"pages\":\"102470\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905892/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy. Nucleic Acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtn.2025.102470\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/11 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2025.102470","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Use of an oversized AAV8 vector for CPS1 deficiency results in long-term survival and ammonia control.
Carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea-cycle disorder, results in hyperammonemia initiating a sequence of adverse events that can lead to coma and death if not treated rapidly. There is a high unmet need for an effective therapeutic for this disorder, especially in early neonatal patients where mortality is excessive. However, development of an adeno-associated virus (AAV)-based approach is hampered by large cDNA size and high protein requirement. We developed an oversized AAV vector as a gene therapy to treat CPS1 deficiency. In order to constrain genome size, we utilized small liver-specific promoter/enhancers and a minimal polyadenylation signal. Long-term survival (9 months, end of study) with ammonia control was achieved in AAV8.CPS1-administered Cps1flox/flox mice, while all null vector-injected controls died with marked hyperammonemia; female mice demonstrated improved survival over treated males. While glutamine remained elevated compared to controls, ammonia was controlled in surviving animals. Mice maintained their weights and were not sarcopenic. While drinking water did contain carglumic acid, no nitrogen scavengers were administered. Although there were concerns with vector genomic integrity, these findings demonstrate proof of concept for an oversized gene-therapy approach for a challenging urea-cycle disorder where high-level hepatic protein is essential for survival.
期刊介绍:
Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.