{"title":"金属离子掺杂硼酸盐基生物活性玻璃的性能及抗菌效果。","authors":"Sarah Fakher, David Westenberg","doi":"10.1080/17460913.2025.2470029","DOIUrl":null,"url":null,"abstract":"<p><p>Bioactive glasses (BGs) are physiologically reactive surface biomaterials widely used in biomedical applications and various treatments. Borate bioactive glasses (BBGs) are third-generation BGs, and they exhibit superior biodegradable, bioactive, osteoconductive, antibacterial, and biocompatible properties compared to other types of BGs. Certain concentrations of dopant ions can be incorporated into the chemical structure of BBGs to enhance their biological functionalities and antimicrobial properties. It was demonstrated that those ions play a crucial role in the biological responsiveness <i>in vitro</i> and <i>in vivo</i> once in contact with a physiological environment. The dissolution products of ion-doped BBGs were noted in their ability to stimulate gene expression related to cell differentiation and proliferation, promote angiogenesis, display anti-inflammatory effects, and inhibit bacterial growth within a few hours. Thus, metal-ion-doped BBGs address several limitations encountered by biomedical, tissue engineering, and infection control applications. Considering the research studies on BBGs to date, this review aims to analyze metal-ion-doped BBGs based on their primary antibacterial properties and effectiveness.</p>","PeriodicalId":12773,"journal":{"name":"Future microbiology","volume":" ","pages":"315-331"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938980/pdf/","citationCount":"0","resultStr":"{\"title\":\"Properties and antibacterial effectiveness of metal-ion doped borate-based bioactive glasses.\",\"authors\":\"Sarah Fakher, David Westenberg\",\"doi\":\"10.1080/17460913.2025.2470029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioactive glasses (BGs) are physiologically reactive surface biomaterials widely used in biomedical applications and various treatments. Borate bioactive glasses (BBGs) are third-generation BGs, and they exhibit superior biodegradable, bioactive, osteoconductive, antibacterial, and biocompatible properties compared to other types of BGs. Certain concentrations of dopant ions can be incorporated into the chemical structure of BBGs to enhance their biological functionalities and antimicrobial properties. It was demonstrated that those ions play a crucial role in the biological responsiveness <i>in vitro</i> and <i>in vivo</i> once in contact with a physiological environment. The dissolution products of ion-doped BBGs were noted in their ability to stimulate gene expression related to cell differentiation and proliferation, promote angiogenesis, display anti-inflammatory effects, and inhibit bacterial growth within a few hours. Thus, metal-ion-doped BBGs address several limitations encountered by biomedical, tissue engineering, and infection control applications. Considering the research studies on BBGs to date, this review aims to analyze metal-ion-doped BBGs based on their primary antibacterial properties and effectiveness.</p>\",\"PeriodicalId\":12773,\"journal\":{\"name\":\"Future microbiology\",\"volume\":\" \",\"pages\":\"315-331\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938980/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17460913.2025.2470029\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17460913.2025.2470029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Properties and antibacterial effectiveness of metal-ion doped borate-based bioactive glasses.
Bioactive glasses (BGs) are physiologically reactive surface biomaterials widely used in biomedical applications and various treatments. Borate bioactive glasses (BBGs) are third-generation BGs, and they exhibit superior biodegradable, bioactive, osteoconductive, antibacterial, and biocompatible properties compared to other types of BGs. Certain concentrations of dopant ions can be incorporated into the chemical structure of BBGs to enhance their biological functionalities and antimicrobial properties. It was demonstrated that those ions play a crucial role in the biological responsiveness in vitro and in vivo once in contact with a physiological environment. The dissolution products of ion-doped BBGs were noted in their ability to stimulate gene expression related to cell differentiation and proliferation, promote angiogenesis, display anti-inflammatory effects, and inhibit bacterial growth within a few hours. Thus, metal-ion-doped BBGs address several limitations encountered by biomedical, tissue engineering, and infection control applications. Considering the research studies on BBGs to date, this review aims to analyze metal-ion-doped BBGs based on their primary antibacterial properties and effectiveness.
期刊介绍:
Future Microbiology delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this increasingly important and vast area of research.