Matthew J Kourakis, Kerrianne Ryan, Erin D Newman-Smith, Ian A Meinertzhagen, William C Smith
{"title":"尾状中枢神经系统的运动神经元与脊椎动物脊髓具有同源性。","authors":"Matthew J Kourakis, Kerrianne Ryan, Erin D Newman-Smith, Ian A Meinertzhagen, William C Smith","doi":"10.1242/dev.204525","DOIUrl":null,"url":null,"abstract":"<p><p>Invertebrate chordates, such as the tunicate Ciona, can offer insight into the evolution of the chordate phylum. Anatomical features shared between invertebrate chordates and vertebrates may be taken as evidence of their presence in a common chordate ancestor. The central nervous systems (CNSs) of Ciona larvae and vertebrates share a similar anatomy despite the Ciona CNS having only ∼180 neurons. However, the depth of conservation between the Ciona CNS and those of vertebrates is not resolved. The Ciona caudal CNS, while appearing spinal cord-like, has hitherto been thought to lack motor neurons, bringing into question its homology with the vertebrate spinal cord. We show here that the Ciona larval caudal CNS does, in fact, have functional motor neurons along its length, pointing to the presence of a functional spinal cord-like structure at the base of the chordates.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"152 5","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motor neurons in the tunicate caudal central nervous system reveal homology to the vertebrate spinal cord.\",\"authors\":\"Matthew J Kourakis, Kerrianne Ryan, Erin D Newman-Smith, Ian A Meinertzhagen, William C Smith\",\"doi\":\"10.1242/dev.204525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Invertebrate chordates, such as the tunicate Ciona, can offer insight into the evolution of the chordate phylum. Anatomical features shared between invertebrate chordates and vertebrates may be taken as evidence of their presence in a common chordate ancestor. The central nervous systems (CNSs) of Ciona larvae and vertebrates share a similar anatomy despite the Ciona CNS having only ∼180 neurons. However, the depth of conservation between the Ciona CNS and those of vertebrates is not resolved. The Ciona caudal CNS, while appearing spinal cord-like, has hitherto been thought to lack motor neurons, bringing into question its homology with the vertebrate spinal cord. We show here that the Ciona larval caudal CNS does, in fact, have functional motor neurons along its length, pointing to the presence of a functional spinal cord-like structure at the base of the chordates.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\"152 5\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204525\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204525","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Motor neurons in the tunicate caudal central nervous system reveal homology to the vertebrate spinal cord.
Invertebrate chordates, such as the tunicate Ciona, can offer insight into the evolution of the chordate phylum. Anatomical features shared between invertebrate chordates and vertebrates may be taken as evidence of their presence in a common chordate ancestor. The central nervous systems (CNSs) of Ciona larvae and vertebrates share a similar anatomy despite the Ciona CNS having only ∼180 neurons. However, the depth of conservation between the Ciona CNS and those of vertebrates is not resolved. The Ciona caudal CNS, while appearing spinal cord-like, has hitherto been thought to lack motor neurons, bringing into question its homology with the vertebrate spinal cord. We show here that the Ciona larval caudal CNS does, in fact, have functional motor neurons along its length, pointing to the presence of a functional spinal cord-like structure at the base of the chordates.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.