碳酸盐碱度诱导尼罗罗非鱼的应激反应和肾脏和代谢紊乱:骆驼乳清蛋白水解饲料缓解。

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rowida E Ibrahim, Abdelwahab A Abdelwarith, Elsayed M Younis, Amany Abdel-Rahman Mohamed, Tarek Khamis, Ali Osman, Mohamed M M Metwally, Simon J Davies, Yasmina M Abd-Elhakim
{"title":"碳酸盐碱度诱导尼罗罗非鱼的应激反应和肾脏和代谢紊乱:骆驼乳清蛋白水解饲料缓解。","authors":"Rowida E Ibrahim, Abdelwahab A Abdelwarith, Elsayed M Younis, Amany Abdel-Rahman Mohamed, Tarek Khamis, Ali Osman, Mohamed M M Metwally, Simon J Davies, Yasmina M Abd-Elhakim","doi":"10.1007/s10695-024-01442-2","DOIUrl":null,"url":null,"abstract":"<p><p>Alkaline stress is a major concern in aquaculture that badly affects the aquatic species' health and hemostasis. This research investigated the effect of carbonate alkalinity exposure on the gills and kidney organs as important organs for hemostasis, as well as the ameliorative role of camel protein hydrolysates (CPH) as dietary additives against alkaline stress detrimental impacts in Nile tilapia (Oreochromis niloticus). The fish (n = 160) were divided into four groups (G1, G2, G3, and G4), with the control (G1) fed a basal diet, while G2 was fed a basal diet supplemented with 75 g CPH/kg and was reared in freshwater (carbonate alkalinity of 1.4 µmol/L, pH = 7.19). The G3 and G4 were reared in alkaline water (carbonate alkalinity of 23.8 µmol/L, pH = 8.65) and fed the same diets as G1 and G2 for 30 days, respectively. The fish were stocked under a water temperature of 26.4 ± 1.5 °C, and the diets were introduced to the fish three times daily at a rate of 4% of their body weight. The results of this research showed that alkaline exposure increased kidney function parameters (creatinine, urea, and uric acid), glucose, and cortisol levels in the exposed fish. Alkaline exposure reduced the blood electrolytes level (calcium, magnesium, sodium, potassium, and chloride) and branchial antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione) and elevated malondialdehyde level in the exposed fish. Significant downregulation of the branchial expression of Na<sup>+</sup>/K<sup>+</sup> ATPase α-3 subunit (0.17-fold), calcium/calmodulin-dependant protein kinase 1 β (0.23 fold), chloride channel protein 2 (0.38-fold), solute carrier family 12 a 2 (0.33-fold), and solute carrier family 4 a 4 (0.21-fold) was in the fish-reared under carbonate alkalinity stress. Alkaline exposure induced severe histopathological changes in the gills and kidney tissue architecture including inflammatory, circulatory, degenerative, and progressive responses. Supplementation of the Nile tilapia diet with 75 g CPH/kg ameliorated renal function and balanced the blood electrolytes, glucose, and cortisol levels in the alkaline-exposed fish. Modulation of the branchial gene expression profile and improving the gills and kidney microstructure were consequences of feeding on CPH diets during alkaline stress situations. Overall, fortifying the Nile tilapia diets with 75 g CPH/kg helps the fish restore their hemostasis and metabolic status during alkaline stress exposure which enables the sustainable culture of this species in such conditions.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 2","pages":"66"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonate alkalinity induces stress responses and renal and metabolic disorders in Nile tilapia: mitigation by camel whey protein hydrolysate diet.\",\"authors\":\"Rowida E Ibrahim, Abdelwahab A Abdelwarith, Elsayed M Younis, Amany Abdel-Rahman Mohamed, Tarek Khamis, Ali Osman, Mohamed M M Metwally, Simon J Davies, Yasmina M Abd-Elhakim\",\"doi\":\"10.1007/s10695-024-01442-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alkaline stress is a major concern in aquaculture that badly affects the aquatic species' health and hemostasis. This research investigated the effect of carbonate alkalinity exposure on the gills and kidney organs as important organs for hemostasis, as well as the ameliorative role of camel protein hydrolysates (CPH) as dietary additives against alkaline stress detrimental impacts in Nile tilapia (Oreochromis niloticus). The fish (n = 160) were divided into four groups (G1, G2, G3, and G4), with the control (G1) fed a basal diet, while G2 was fed a basal diet supplemented with 75 g CPH/kg and was reared in freshwater (carbonate alkalinity of 1.4 µmol/L, pH = 7.19). The G3 and G4 were reared in alkaline water (carbonate alkalinity of 23.8 µmol/L, pH = 8.65) and fed the same diets as G1 and G2 for 30 days, respectively. The fish were stocked under a water temperature of 26.4 ± 1.5 °C, and the diets were introduced to the fish three times daily at a rate of 4% of their body weight. The results of this research showed that alkaline exposure increased kidney function parameters (creatinine, urea, and uric acid), glucose, and cortisol levels in the exposed fish. Alkaline exposure reduced the blood electrolytes level (calcium, magnesium, sodium, potassium, and chloride) and branchial antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione) and elevated malondialdehyde level in the exposed fish. Significant downregulation of the branchial expression of Na<sup>+</sup>/K<sup>+</sup> ATPase α-3 subunit (0.17-fold), calcium/calmodulin-dependant protein kinase 1 β (0.23 fold), chloride channel protein 2 (0.38-fold), solute carrier family 12 a 2 (0.33-fold), and solute carrier family 4 a 4 (0.21-fold) was in the fish-reared under carbonate alkalinity stress. Alkaline exposure induced severe histopathological changes in the gills and kidney tissue architecture including inflammatory, circulatory, degenerative, and progressive responses. Supplementation of the Nile tilapia diet with 75 g CPH/kg ameliorated renal function and balanced the blood electrolytes, glucose, and cortisol levels in the alkaline-exposed fish. Modulation of the branchial gene expression profile and improving the gills and kidney microstructure were consequences of feeding on CPH diets during alkaline stress situations. Overall, fortifying the Nile tilapia diets with 75 g CPH/kg helps the fish restore their hemostasis and metabolic status during alkaline stress exposure which enables the sustainable culture of this species in such conditions.</p>\",\"PeriodicalId\":12274,\"journal\":{\"name\":\"Fish Physiology and Biochemistry\",\"volume\":\"51 2\",\"pages\":\"66\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish Physiology and Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10695-024-01442-2\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-024-01442-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

碱胁迫是水产养殖中的一个主要问题,严重影响水产物种的健康和止血。本研究研究了碳酸盐碱度暴露对尼罗罗非鱼(Oreochromis niloticus)鳃和肾器官(作为重要的止血器官)的影响,以及骆驼蛋白水解物(CPH)作为饲料添加剂对碱胁迫不利影响的改善作用。将160尾鱼分为G1、G2、G3和G4组,对照组(G1)饲喂基础饲粮,G2饲喂在基础饲粮中添加75 g CPH/kg的基础饲粮,养殖环境为淡水(碳酸盐碱度为1.4µmol/L, pH = 7.19)。G3和G4分别饲喂碱性水(碳酸盐碱度为23.8µmol/L, pH = 8.65),饲喂与G1和G2相同的饲料,饲养30 d。在26.4±1.5°C的水温下放养鱼,每天3次,以其体重的4%添加饲料。这项研究的结果表明,暴露在碱性环境中会增加肾脏功能参数(肌酐、尿素和尿酸)、葡萄糖和皮质醇水平。碱性暴露降低了血液电解质水平(钙、镁、钠、钾和氯化物)和鳃抗氧化酶(超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶和还原性谷胱甘肽),并升高了暴露鱼体内的丙二醛水平。在碳酸盐碱性胁迫下饲养的鱼类,Na+/K+ atp酶α-3亚基(0.17倍)、钙/钙调素依赖性蛋白激酶1 β(0.23倍)、氯通道蛋白2(0.38倍)、溶质载体家族12a2(0.33倍)和溶质载体家族4a4(0.21倍)的鳃部表达均显著下调。碱性暴露导致鳃和肾脏组织结构发生严重的组织病理学变化,包括炎症、循环、退行性和进行性反应。在尼罗罗非鱼饲料中添加75 g CPH/kg,可改善暴露于碱性环境中的罗非鱼的肾功能,平衡血液电解质、葡萄糖和皮质醇水平。在碱性胁迫条件下,CPH饲料可调节鳃部基因表达谱,改善鳃部和肾脏微观结构。总的来说,在尼罗罗非鱼饲料中添加75 g CPH/kg,有助于鱼在碱性胁迫下恢复其止血和代谢状态,从而使该物种能够在这种条件下持续培养。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbonate alkalinity induces stress responses and renal and metabolic disorders in Nile tilapia: mitigation by camel whey protein hydrolysate diet.

Alkaline stress is a major concern in aquaculture that badly affects the aquatic species' health and hemostasis. This research investigated the effect of carbonate alkalinity exposure on the gills and kidney organs as important organs for hemostasis, as well as the ameliorative role of camel protein hydrolysates (CPH) as dietary additives against alkaline stress detrimental impacts in Nile tilapia (Oreochromis niloticus). The fish (n = 160) were divided into four groups (G1, G2, G3, and G4), with the control (G1) fed a basal diet, while G2 was fed a basal diet supplemented with 75 g CPH/kg and was reared in freshwater (carbonate alkalinity of 1.4 µmol/L, pH = 7.19). The G3 and G4 were reared in alkaline water (carbonate alkalinity of 23.8 µmol/L, pH = 8.65) and fed the same diets as G1 and G2 for 30 days, respectively. The fish were stocked under a water temperature of 26.4 ± 1.5 °C, and the diets were introduced to the fish three times daily at a rate of 4% of their body weight. The results of this research showed that alkaline exposure increased kidney function parameters (creatinine, urea, and uric acid), glucose, and cortisol levels in the exposed fish. Alkaline exposure reduced the blood electrolytes level (calcium, magnesium, sodium, potassium, and chloride) and branchial antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione) and elevated malondialdehyde level in the exposed fish. Significant downregulation of the branchial expression of Na+/K+ ATPase α-3 subunit (0.17-fold), calcium/calmodulin-dependant protein kinase 1 β (0.23 fold), chloride channel protein 2 (0.38-fold), solute carrier family 12 a 2 (0.33-fold), and solute carrier family 4 a 4 (0.21-fold) was in the fish-reared under carbonate alkalinity stress. Alkaline exposure induced severe histopathological changes in the gills and kidney tissue architecture including inflammatory, circulatory, degenerative, and progressive responses. Supplementation of the Nile tilapia diet with 75 g CPH/kg ameliorated renal function and balanced the blood electrolytes, glucose, and cortisol levels in the alkaline-exposed fish. Modulation of the branchial gene expression profile and improving the gills and kidney microstructure were consequences of feeding on CPH diets during alkaline stress situations. Overall, fortifying the Nile tilapia diets with 75 g CPH/kg helps the fish restore their hemostasis and metabolic status during alkaline stress exposure which enables the sustainable culture of this species in such conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信